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ABSTRACT

Software-defined vehicles (SDVs) rely on cameras for intelligent

and safety-critical applications but face challenges from dynamic

environmental noise, including weather and occlusions. Unlike

static sensors, SDV cameras encounter noise patterns influenced

by driving speed, a factor often overlooked in prior research. To

address this gap, we conduct a quantitative analysis of the in-transit

noise impact using data from public datasets, the CARLA simulator,

a robotic vehicle, and a real vehicle. Our findings suggest that main-

taining a speed below 40km/h may serve as a threshold for ensuring

reliable camera-based applications under noisy urban conditions. In

addition, we propose TransitNet, a novel model designed to mitigate

in-transit camera noise and enhance driving safety, particularly at

higher speeds. Compared tomultiple baselines, experimental results

show that TransitNet improves the F-measure by 5.1%, mAP@50

by 3.6%, and increases FPS by 56.7% across all datasets. We also

provide detailed observations and insights from extensive testing.
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1 INTRODUCTION

Software-defined vehicles (SDVs) are vehicles whose core function-

alities are managed by precise, safety-critical software for extensive

functionality, supporting continuous software optimization and

updates throughout the vehicle’s lifecycle [24, 31, 33, 43]. Recently,

forward-looking industry leaders (e.g., Tesla [47], General Motors

[66], Ford [26], BMW [25], Mercedes-Benz [20], Toyota [44], Audi
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Figure 1: An overview of our structured methodology for

understanding the impact of vehicle speed on SDV vision al-

gorithms and mitigating diverse in-transit vision noise types.

We address three main research questions (RQs): RQ1 quanti-

fies how vehicle speed affects algorithm performance using

public datasets, CARLA simulator data, and data collected

from both a robotic vehicle and a real vehicle (top-left). RQ2

introduces TransitNet as a versatile solution to reduce diverse

in-transit noise (top-right). RQ3 involves extensive testing

and analysis of TransitNet’s effectiveness (bottom-right).

[6], Arm [4], Amazon [50], and Aptiv [3]) have begun to push a

strategic transformation from traditional vehicles to SDVs. Particu-

larly, autonomous vehicles can be considered a type of SDV.

As sensor-enabled smart systems, cameras are among the most

critical and widely used sensors in SDVs, supporting various in-

telligent and safety-critical applications. For instance, Tesla’s Full

Self-Driving (FSD) software relies entirely on a comprehensive suite

of cameras for its autonomous driving capabilities. However, in

2024, even the latest version of the FSD software reportedly failed

to recognize red lights via cameras due to external visual factors

[22], leading to hundreds of crashes and dozens of fatalities [23].

Specifically, inclement weather (e.g., rain and snow) and un-

expected occlusions (e.g., leaves and mud) are typically external

factors that introduce noise into sensor data. The former are usu-

ally small in size but high in density, while the latter are larger and

cover a portion of the camera’s view. Studies show that fatal vehicle

crashes increase by 34% in such adverse weather conditions [59].

1.1 Unique Challenges on SDV
Imperatives of a New Strategy. While external data noise is a com-

mon issue in consumer electronics like surveillance cameras and

windshield screens, handling data noise in SDV presents unique

challenges and high requirements due to several key differences.
First, varying vehicle speeds result in rapidly changing noise

patterns, even for the same types of noise, such as raindrops. Our

analysis of multiple datasets (e.g., BDD100K) shows that raindrops
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spread outward across the camera lens due to the vehicle’s forward

motion and air resistance, with dispersion varying with driving

speed. This variation directly influences the model’s attention on

key features, potentially diverting attention away from target ob-

jects (detailed in Section 1.2). The impact is often more pronounced

for side cameras due to their greater exposure to air turbulence.
Second, SDV cameras are often exposed to various types of noise

depending on their location, especially as they are mounted on the

vehicle’s exterior, where internal wipers or heaters cannot mitigate

external interference. For example, flying insects may obstruct cam-

eras near fields, while salt deposits can accumulate in regions like

Salt Lake City. Coastal areas, such as Houston, expose cameras to

severe weather, including storms and heavy rainfall. Mud splashes

can also obstruct cameras, changing shape and coverage as the

vehicle moves, causing prolonged visibility issues.
Third, addressing the aforementioned diverse noise types re-

quires a robust vehicle model, such as an object detection model,

capable of handling noise-degraded data. However, limited comput-

ing resources in SDVs make it difficult to maintain high processing

speeds, potentially compromising vehicle safety [46].

1.2 Motivation: In-Transit Noise Analysis
For the first time, this paper demonstrates that vehicle perception can

be enhanced by accounting for dynamic noise patterns at different

driving speeds. Traditional studies have focused on static noise

affecting fixed cameras, overlooking the dynamic conditions of

driving. As shown in Fig. 2 and Fig. 3, in-transit noise patterns

vary with speed, altering the model’s focus on key features. By

addressing these dynamic noise patterns, our work aims to improve

perception accuracy in real-world driving, where noise is inherently

variable and influenced by speed.

(a) Stationary (b) Low-speed (c) High-speed
Rain Streaks

Figure 2: Noise patterns at different driving speeds. Green

outlines indicate noise (raindrop) edges, highlighting varia-

tions in noise shape, density, and location across the lens.

Car Car

(a) Rain-free (b) Stationary under rain (c) Low-speed under rain (d) High-speed under rain

CarCarBuilding Building BuildingCargBBBBB

Figure 3: Saliency maps highlighting key regions in an image

that contribute to the model’s decision. Red-highlighted ar-

eas represent the most salient regions, indicating where they

grab attention for the task at hand, such as object detection.

(1) Noise patterns. Using raindrops as an example of noise, we

curate 3,000 BDD100K videos to identify driving scenes involving

static vehicles (e.g., stopped at a red light), low-speed urban driving,

and high-speed highway driving on rainy days. We use Canny edge

detection [56] combined with K-means clustering [2] to visualize

raindrop edges. Fig. 2 presents typical noise patterns across these

scenarios, with green outlines representing the noise edges.
Specifically, when the vehicle is stationary (Fig. 2(a)), raindrops

are often evenly distributed and uniform in size. At low speeds

(Fig. 2(b)), they shift upward or to the edges, merging into fewer

but larger droplets concentrated at the top of the lens. At high

speeds (Fig. 2(c)), raindrops slide outward, forming streaks with

sparse noise areas along the streaks and dense concentrations on

either side, creating an uneven noise distribution. The frequency

of these rain streaks tends to increase with higher driving speeds,

further exacerbating the intermittent and uneven noise distribution.

(2) Saliency maps for model attention. To further understand

how different in-transit noise patterns affect vehicle model perfor-

mance on noise-degraded datasets, we generate saliency maps of a

pre-trained ResNet-50 model [63] for object detection. As shown in

Fig. 3, the red-highlighted areas indicate the regions that the model

considers most influential in its decision-making process.
To be concrete, as a baseline, in rain-free conditions (Fig. 3(a)), the

red-highlighted regions are concentrated around the target objects,

indicating that the model can effectively focus on key elements

for successful object detection. Under stationary, rainy conditions

(Fig. 3(b)), noise obscures scene details, leading to more scattered

model attention for object detection. At low speeds (Fig. 3(c)), the

model’s attention is further misdirected away from the primary

objects. In high-speed, rainy conditions (Fig. 3(d)), rain streaks and

uneven noise distribution divert the model’s attention, which tends

to result in less accurate detection of the key objects.
One might argue that the example evidence, such as noise pat-

terns (Fig. 2) and saliency maps (Fig. 3), is specific to the dataset

under study. To test this, we analyze data from other sources, in-

cluding KITTI, nuScenes, and data from a robotic vehicle and a

real vehicle at different speeds. Similar trends are observed across

all datasets. While these examples do not imply that all vision

noise will have identical effects, they demonstrate that considering

driving speeds can enhance scene understanding in vision tasks

compared to traditional methods that overlook the dynamic nature

of driving, particularly under challenging weather conditions.

1.3 Research Questions and Contributions
Motivated by the in-transit noise analysis (Section 1.2), we focus

on the widely adopted camera sensor as a foundational study and

select object detection as a case study for SDVs. This work aims

to answer three main research questions (RQs): 𝑖) How does

the vehicle’s speed influence camera-based object detection results

under inclement weather and unexpected occlusion conditions? 𝑖𝑖)
Can we design and implement a “one-for-all” solution to mitigate

the impact of various types of in-transit camera noise, considering

different vehicle speeds? 𝑖𝑖𝑖) Can this comprehensive solution be

both accurate and fast enough for different driving situations?
Technical-wise, we develop research tasks spanning theory, sim-

ulation, practice, and their interplay to answer the three RQs. Below,

we describe our major contributions.

• For RQ1, we conduct a quantitative analysis using the noise-

degraded BDD100K data, along with data from the CARLA

simulator, a robotic vehicle, and a real vehicle, to assess the

impact of speed on vision tasks under two types of in-transit

noise: unexpected occlusions and inclement weather (Sec. 3

and Sec. 4). Our findings suggest that 40km/h may serve as a

threshold for safe urban driving to ensure accurate camera-

based applications under various noisy conditions (Sec. 6).

• For RQ2, we propose TransitNet to mitigate various types

of in-transit camera noise while balancing detection accu-

racy and inference speed. For RQ3, we evaluate TransitNet’s
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effectiveness by comparing it to multiple baselines. Tran-

sitNet outperforms state-of-the-art (SOTA) models, such as

D-FINE and RT-DETR, achieving a mean Average Precision

(mAP@50) improvement of 7.4% and 11.5%, respectively,

while nearly doubling the FPS for real-time performance

across all datasets.

• We provide an extensive discussion of our experimental ob-

servations for RQ1, RQ2, and RQ3, offering in-depth expla-

nations and identifying key trends (Sec. 6). These insights

enhance understanding of the challenges faced by in-transit

vehicle camera-based applications under inclement weather

and unexpected occlusions, contributing to the broader knowl-

edge base for enhanced vehicle safety.

The rest of the paper is organized as follows: Sec. 2 describes

the experiment setup. Experimental results of RQ1, RQ2, and RQ3

are shown in Sec. 3, Sec. 4, and Sec. 5, respectively. Sec. 6 discusses

experiment results and observations. Related works are reviewed

in Sec. 7. Finally, Sec. 8 concludes the entire paper.

2 EXPERIMENT SETUP
Before presenting our experiment design, we summarize the key

components of our experiments in this section, including test plat-

forms, experiment tools, and detection methods used.

2.1 Testbed and Tool
In this work, we use multiple experiment testbeds: 𝑖) CARLA, a
widely-used public simulation platform in automotive research

(Fig. 4(a)), 𝑖𝑖) a physical robotic vehicle testbed assembled with

Mecanum wheels and developed using Robot Operating System

(ROS) 2 (Fig. 4(b)), and 𝑖𝑖𝑖) a real vehicle testbed equipped with a

front camera and two side cameras. We provide the robotic vehicle

with Level 2 autonomous driving capabilities, including mapping,

path planning, obstacle avoidance, etc.

62

Start Point

Jetson NX

Camera

NXRobotic Vehicle

(a) CALRA simulator (b) Robotic vehicle on the track map
Ego Vehicle15

Figure 4: CARLA simulator and indoor testbeds.

(a) Robotic vehicle with 
transparent rain shield

(b) Chevrolet Equinox vehicle 
with front and side cameras

Figure 5: Outdoor testbeds.

2.1.1 CARLA simulator. CARLA, a renowned open-source simu-

lator for vehicle-related research, allows for the structuring of a

digital world to meet various requirements [12]. It also provides an

urban driving scenario (called “Town 01”) along with adjustable set-

tings, such as weather, vehicle speed, and sensor angle, facilitating

different SDV testing tasks.

2.1.2 Robotic Vehicle and Track Map. As shown in Fig. 4(b), the

robotic vehicle employs the NVIDIA Jetson Orin NX as the comput-

ing unit and is equippedwith 16GB ofmemory and high-performance

sensors, such as LiDAR and a depth camera (Astra Pro Plus). The Jet-

son Orin NX is among the latest advancements in NVIDIA’s Jetson

series. Featuring the NVIDIA Ampere architecture GPU with up to

1024 CUDA cores and a 12-core Arm Cortex-A78AE CPU, it delivers

up to 100 Tera Operations Per Second (TOPS) of AI performance,

compared to the 0.5 TOPS offered by the Jetson Nano [13].
As shown in Fig. 4(b), we have a 2.8m × 3.2m autopilot track

map with parking lots, sidewalks, interactions, traffic signs (18cm

tall), and traffic lights (24cm tall). It can simulate traffic scenes for

vehicles to drive automatically. In addition, to introduce in-transit

noise, such as raindrops, the robotic vehicle is equipped with a

transparent rain shield for outdoor experiments (Fig. 5(a)), and an

electric sprayer is used to continuously apply water during driving.

2.1.3 Real Vehicle with Exterior Cameras. Our testbed also includes

a Chevrolet Equinox SUV equipped with three Orbit T100 1080P

camerasmounted on the roof to capture forward and side views. The

cameras are installed horizontally, each with a 142-degree viewing

angle. To align with mainstream datasets such as BDD100K, we crop

the images to a resolution of 1280 × 720 pixels. The capability to

conduct experiments using both a simulator and multiple physical

testbeds enables a comprehensive evaluation.

2.2 Mitigation Solutions and Baselines
To address the impact of in-transit noise on SDV vision tasks, we

introduce TransitNet (detailed in Section 5), inspired by the YOLO

framework and its limitations (discussed in Section 5.1.1). Tran-

sitNet is designed to enhance real-time object detection, optimize

hardware resource usage, and improve resilience to dynamic noise.
To further validate the superiority of our approach, we conduct

a detailed comparison and analysis with current mainstream and

SOTA methods. These methods include SSD [40], which achieves

a balanced trade-off between speed and accuracy by detecting ob-

jects at multiple scales, making it suitable for real-time applications;

RT-DETR [81], which integrates the global feature extraction ca-

pabilities of Transformers with an efficient detection mechanism,

excelling in both accuracy and speed; and D-FINE [53], a model

employing dynamic fine-grained inference strategies, effective for

detecting in complex backgrounds and fine-scale objects, represent-

ing the advanced standard in real-time object detection.

3 IN-TRANSIT NOISE-DEGRADED DATA
This work focuses on the in-transit SDV vision noises caused by

𝑖) inclement weather (e.g., raindrops or snowflakes) and 𝑖𝑖) unex-
pected occlusions (e.g., leaves and mud). Inclement weather pro-

duces small but densely distributed noise that covers the entire

image, while unexpected occlusions result in larger, more sporadic

coverage of the camera’s view.

3.1 CARLA In-Transit Noise-Degraded Data
We first collect the CARLA in-transit noise-degraded dataset using

a front-facing camera mounted on the exterior of the ego vehicle,

i.e., the primary vehicle controlled by the user or the automated

driving system (Fig. 4(a)). The camera captures raw images at 20

frames per second (FPS) with a resolution of 1280 × 720 pixels.
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Ego vehicle trajectory. As shown in Fig. 4(a), in our CARLA setup,

the ego vehicle starts at two points marked by yellow stars, from

“waypoint 62” to “waypoint 15”, and proceeds along the designated

path marked by the red arrow in “Town 01”. Here, “waypoint 62” is

located at the junction of a T-shaped road with a traffic light at the

next intersection, showing diverse urban road conditions. Mean-

while, “waypoint 15” provides a scenario with five surrounding

vehicles, representing complex driving conditions.

Diverse driving speed setup in CARLA. Although the CARLA

simulator can create various driving scenarios, such as rainy con-

ditions, maintaining a constant speed is challenging in both man-

ual and automated modes. To address this, we use a proportional-

integral-derivative (PID) controller to keep the ego vehicle (the

white one in Fig. 4(a)), cruising at eight speeds, ranging from 10km/h

to 80km/h. Specifically, we initially set the maximum throttle value

to accelerate to the desired speed. Once the target speed is reached,

the throttle value is adjusted to 0.2 to ensure uniform speed, main-

taining the absolute speed deviation within 1km/h.

Simulating noise in CARLA driving scenarios. We use rain

as a representative case of inclement weather in CARLA, where

raindrops serve as noise. Adjusting the precipitation levels, we

vary rain intensity, corresponding to different numbers of rain

streaks (similar to the real-world scenario in Fig. 2(c)). The intensity

levels are set to 0%, 25%, 50%, and 75% of the maximum possible,

where 0% represents a clear day, and the other levels represent

“light,” “medium,” and “heavy” rain. The highest level, 75%, provides

a realistic and challenging scenario to test noise effects.
However, we observe that CARLA’s precipitation effects are

somewhat limited and lack realism, particularly for heavy rain,

where the raindrops are not sufficiently pronounced. To address

this, we develop a versatile noise generation mechanism (Algorithm

1 in Section 3.4.3) to create dynamic light, medium, and heavy

rain effects, which we apply to the clear CARLA dataset to better

investigate the impact of speed on noise-degraded vision tasks.
In addition, to better quantify the impact of driving speed on

noise-degraded vision tasks, we also minimize external environ-

mental variables. For instance, we standardize the number and

positions of non-player vehicles on the CARLA map, like the pink

one in Fig. 4(a), during each driving round.

3.2 Robotic Vehicle In-Transit Data
Robotic vehicle trajectory. As shown in Fig. 4(b), during the

indoor experiment, the robotic vehicle begins its journey on an

autopilot track map, proceeding along a straight road where it

encounters a stop sign, a yellow vehicle, and a traffic light. This

design mirrors “waypoint 62” in CARLA, facilitating comparisons

between the simulation and the real-world testbed.

Diverse driving speed of robotic vehicle. To collect on-map

driving videos using the robotic vehicle, we employ the PID method

to maintain constant speeds at four different levels: 0.2m/s, 0.4m/s,

0.6m/s, and 0.8m/s, with a maximum speed of 1m/s, capturing

images at the same pixel size of 1280 × 720. For a direct comparison

with the CARLA dataset and to ensure the data accurately reflects

real-world scenarios, these speeds correspond to real vehicle speeds

of 10km/h, 20km/h, 30km/h, and 40km/h.

Simulating in-transit noise for robotic vehicle. As shown in

Fig. 5(a), to introduce raindrops as external noise for the robotic ve-

hicle at varying speeds, we use an electric sprayer to continuously

apply water while the robotic vehicle is protected by a transparent

rain shield, ensuring no impact on vision tasks such as object detec-

tion. The sprayer features three different mist nozzles to simulate

light, medium, and heavy rain conditions during driving.

3.3 Real-World Driving Data
Wealso collect real-world driving datasets using a Chevrolet Equinox

equipped with stabilized front and side cameras to capture the dri-

ver’s view and the surrounding environment (Fig. 5(b)), recording

images at a resolution of 1280 × 720 pixels. The datasets include

videos of both low-speed urban driving and high-speed highway

routes. Data collection covers diverse road conditions, including

varying speed limits, traffic lights, stop signs, and sidewalks. The

urban scenario features more vehicles and traffic lights, while the

highway scenario involves higher speeds and fewer objects. The

vehicle’s speed ranges from 0 to 96km/h (0 to 60 mph), providing

a comprehensive dataset for analysis. For comparison, data is col-

lected under both sunny and rainy conditions along the same routes,

allowing for an evaluation across different weather scenarios.

3.4 Noise-Degraded BDD100K Data
The Berkeley DeepDrive BDD100K dataset [77] is one of the largest

real driving video collections, featuring 100,000 high-definition

videos totaling over 1,100 hours. Each 40-second video, recorded

at a resolution of 1280 × 720 pixels, captures driving scenarios on

highways as well as in urban and rural areas across major U.S. cities.

3.4.1 Limitations of Existing Datasets. Although the BDD100K

dataset contains extensive video footage, only 1.7% includes noise-

degraded data under inclement weather conditions [77]. Moreover,

it exhibits high redundancy due to the similarity of consecutive

frames and lacks specific vehicle speed information. This limitation

is also present in other public datasets.
To address these limitations, we first identify key noise patterns

for both low-speed urban and high-speed highway scenarios (de-

tailed in Section 1.2 and Section 3.4.2) and develop a versatile noise

generation mechanism to simulate inclement weather and unex-

pected occlusions with adjustable vehicle speeds. These synthesized

noises are then applied to the original BDD100K dataset to create

noise-degraded datasets for comprehensive quantitative analysis.

3.4.2 In-Transit Noise Patterns: Noise Size and Density. Before in-

troducing the versatile noise generation mechanism, we first sum-

marize our key insights on in-transit vision noise patterns below.

(1) In-transit inclement weather noise patterns. As shown

in Fig. 2, at low speeds, due to vehicle motion and lens curvature,

raindrops shift upward or toward the edges of the lens, merging into

larger droplets, resulting in fewer but larger raindrops concentrated

at the top of the lens. At high speeds, raindrops slide outward from

the center bottom, forming rain streaks. This creates a sparse dis-

tribution along the streaks, while areas on either side have a dense

concentration, making the noise distribution noticeably uneven. As

speed increases, the frequency of these rain streaks also tends to

increase, exacerbating the uneven noise distribution.
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(2) In-transit unexpected occlusion patterns. At low speeds,

unexpected occlusions such as leaves or mud are relatively large,

occupying substantial pixel areas with relatively low noise den-

sity without significant spreading or elongation. At high speeds,

occlusions are less affected by vehicle driving speed compared to in-

clement weather noise, though their intensity may increase slightly

due to movement. Despite this, noise shapes and positions remain

largely unchanged, resulting in stable noise patterns.

3.4.3 Versatile Noise Generation. Inspired by real-world noise pat-

terns encountered bymoving vehicles (Section 1.2 and Section 3.4.2),

we propose a versatile noise generation algorithm to create noise

masks for unexpected occlusions and inclement weather. Each noise

mask is adjusted from the previous frame to ensure temporal conti-

nuity, reflecting the influence of vehicle speed on noise patterns.
As illustrated in Algorithm 1 (line 1 and line 6) and Fig. 6, we

assume the camera image has a width𝑊 and height 𝐻 . To generate

noise within each part of the image, it is divided into an𝑚 ×𝑚 grid,

resulting in𝑚2 grid cells. Each grid cell has a width of cell width =
𝑊
𝑚 and a height of cell height = 𝐻

𝑚 . Thus, the area available for

generating noise within each cell is: cell area = 𝑊 ×𝐻
𝑚2 .

Algorithm 1 Versatile Noise Generation

1: Input: Grid dimensions𝑚, radius 𝑟𝑜 , scaling factor 𝛼 , drops number 𝑛𝑢𝑚_𝑝𝑜𝑖𝑛𝑡𝑠
2: Output: In-transit Noise: position, radius, color
3: Initialize an empty list for drops
4: Calculate the width and height of each grid cell
5: Calculate the density factor ℓ = 𝛽 × 𝑣
6: for each cell in the𝑚 ×𝑚 grid (total𝑚2 cells) do
7: if Generating occlusion noise then
8: 𝑐𝑒𝑙𝑙𝑜𝑢𝑡 = (1 − 𝑀𝑐𝑒𝑙𝑙 ) · 𝐵𝑐𝑒𝑙𝑙 � 𝑐𝑒𝑙𝑙𝑖𝑛
9: else
10: Determine the number of drops to generate based on ℓ
11: for each drop to be generated do
12: if cell is the bottom central grid cell then
13: Generate noise streaks with random length
14: else
15: Randomly determine the drop’s position
16: Calculate noise size 𝑟𝑖,𝑗 = 𝑟𝑜 × 𝛼
17: Randomly determine the drop’s color
18: end if
19: Add the drop to the list
20: end for
21: end if
22: end for
23: return In-transit Noise

Grid Cell

Figure 6: An example of in-transit noise generation in a high-

speed scenario, where � denotes element-wisemultiplication

and 𝜃 ranges from 0 to 𝜋 in the first and second quadrants.

(1) Unexpected occlusion noise generation. Next, the oc-

clusion noise generation steps (lines 7-8 of Algorithm 1) compute

the output for each cell as: 𝑐𝑒𝑙𝑙𝑜𝑢𝑡 = (1 −𝑀𝑐𝑒𝑙𝑙 ) · 𝐵𝑐𝑒𝑙𝑙 � 𝑐𝑒𝑙𝑙𝑖𝑛 . In
this process, 𝑐𝑒𝑙𝑙𝑖𝑛 represents a noise-free BDD100K image used

as the background for each grid cell, while 𝐵𝑐𝑒𝑙𝑙 serves as a binary
template for the selected occluding element, such as mud or a leaf.

The mask𝑀𝑐𝑒𝑙𝑙 governs occlusion within each cell: (1 −𝑀𝑐𝑒𝑙𝑙 ) = 1

indicates the presence of occlusion in the cell, while (1−𝑀𝑐𝑒𝑙𝑙 ) = 0

denotes its absence. The element-wise multiplication operator �

blends the occlusion template with the background image, creating

a realistic occlusion effect in the output 𝑐𝑒𝑙𝑙𝑜𝑢𝑡 for each grid cell.

(2) Inclement weather noise generation. The generation of

in-transit inclement weather noise consists of three key steps below

(line 10-19 of Algorithm 1).

𝑖) In-transit noise size. Algorithm 1 directly controls the

noise size by adjusting the radius 𝑟𝑖, 𝑗 of the noise point

within the grid cell of the 𝑖-th row and 𝑗-th column. The

radius 𝑟𝑖, 𝑗 is determined by the default radius 𝑟𝑜 and a scaling
parameter 𝛼 : 𝑟𝑖, 𝑗 = 𝑟𝑜 × 𝛼 . Here, 𝑟𝑜 ranges from 1 and 2, and

𝛼 adjusts the radius value according to the noise level, taking

values from the set [1, 2, 4, 8] in our experiment.

𝑖𝑖) In-transit noise density. Algorithm 1 further determines a

suitable noise density factor ℓ for the current vehicle speed 𝑣 ,
which controls the number of noise points generated within

each grid cell. This factor is defined as: ℓ = 𝛽 × 𝑣 . Here, 𝛽
represents the default density when the vehicle is static, and

𝛽 ∈ (0, 0.5]. In this work, we define 𝛽 = 0.1 and we first the-

oretically set 𝑣 ∈ [10, 20, 30, 40, 50, 60, 70, 80] km/h, resulting

in corresponding noise density factors ℓ ∈ [1, 2, 3, 4, 5, 6, 7, 8].

𝑖𝑖𝑖) In-transit noise streaks. Algorithm 1 generates noise streaks

to simulate realistic weather impacts (Fig. 2(c)). As shown in

Fig. 6, noise streak generation begins from the bottom center

of the image, represented by coordinates (𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦).
Each new streak point is calculated based on the previous

point, using the distance parameter 𝑟𝑖, 𝑗 and the angle 𝜃 (re-

stricted to [0, 𝜋] to keep streaks within the first and second

quadrants, mimicking realistic motion). The x-coordinate of

each subsequent point is determined by adding 𝑟𝑖, 𝑗 · cos(𝜃 )
to the x-coordinate of the center, while the y-coordinate

is calculated by adding 𝑟𝑖, 𝑗 · sin(𝜃 ) to the y-coordinate. By

adjusting the angle 𝜃 , multiple rain streaks can be gener-

ated in different directions within the specified quadrants,

enhancing the authenticity of noise simulation.

3.4.4 In-Transit Noise Generation Results. Using Algorithm 1, we

generate noise-degraded datasets from BDD100K for unexpected

occlusion and inclement weather, as shown in Fig. 7.

Mud
Rain / Snow

Leaf

Figure 7: Examples of noise-degraded data based on

BDD100K: unexpected occlusion and inclement weather.

Figure 7 presents examples of noise-degraded data. The leftmost

andmiddle images depict unexpected occlusions caused bymud and

leaves, respectively, while the rightmost image illustrates inclement

weather conditions, such as rain or snow. Specifically, these occlu-

sions (mud and leaves) are introduced into the noise-free data to

simulate real-world challenges in autonomous driving perception.

To ensure a diverse evaluation, we randomize the positions of large

occlusions across different frames, exposing the model to a wide

range of challenging scenarios that mimic dynamic environmen-

tal changes. In inclement weather scenarios (e.g., rain and snow),
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our proposed Algorithm 1 extends its capabilities to more severe

conditions, incorporating heavy rainfall that significantly obstructs

the camera’s field of view. Through Algorithm 1, we generate addi-

tional noise-degraded datasets based on BDD100K to enhance the

evaluation of in-transit noise and its impact on camera-based object

detection performance at different vehicle speeds under inclement

weather and unexpected occlusion conditions.

4 IN-TRANSIT NOISE EVALUATION
After creating in-transit noise-degraded datasets using data from

BDD100K, the CARLA simulator, a robotic vehicle, and a real vehi-

cle, we next quantify the impact of these noises on vision tasks.

4.1 Noised-Degraded BDD100K Evaluation
To address RQ1: How does the vehicle’s speed influence camera-

based object detection results under inclement weather and unex-

pected occlusion conditions, we first explore the impact of different

noise size ranges on object detection. Then, within the same size

range, we examine the impact of varying noise densities.

4.1.1 Evaluation Metrics. To explore the impact of in-transit noise

on SDVs, we focus on the fundamental application, object detection,

as a case study. We use the missing rate (MR) and false negative

rate (FNR) as the key evaluation metrics, defined as follows:

Missing Rate =
Numtypex − Numbase

Numbase

(1)

False Negative Rate =
FN

TP + FN
(2)

Here, MR measures the proportion of actual objects that are not

detected, calculated as the reduction in detection counts due to in-

transit noise effects by comparing the difference between detections

under adverse conditions (Numtypex) and baseline detections in

clear conditions (Numbase), normalized by the baseline.
TP and FN represent true positives and false negatives, respec-

tively, where T and F indicate whether the detection result is correct,

and P and N denote whether an object is detected (positive) or ab-

sent (negative). The FNR metric is essential for assessing detection

reliability, particularly in safety-critical applications. Although both

FNR and MR measure undetected objects, they differ in focus: MR

evaluates the impact of environmental factors by comparing de-

tection counts under clear and adverse conditions, whereas FNR

assesses detection performance within a single condition.
In safety-critical applications such as object detection for ve-

hicles, FNR is more critical than the False Positive Rate (FPR), as

missing an object (e.g., a pedestrian or another vehicle) directly

compromises safety [32, 76]. In contrast, FPR may cause unnec-

essary braking or avoidance but typically poses less immediate

danger. Hence, minimizing FNR is essential to ensure safety and

reliability, making it a key evaluation metric in this study.

4.1.2 Impact of In-Transit Noise Sizes. We first assess the impact

of noise sizes on object detection using YOLOv9. We define and

create three experimental groups based on the noise-degraded

BDD100K data with “light,” “medium,” and “heavy” noise levels

to represent the light-level, medium-level, and heavy-level noise-

degraded datasets. The corresponding noise sizes 𝑟𝑖, 𝑗 (as discussed
in Algorithm 1) fall into three categories: [1,2], [2,4], and [4,8].

We use the detection results of YOLOv9 on the original noise-free

BDD100K dataset as the ground truth to measure the performance
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Figure 8: The evaluation results of object detection for five

main classes (car, truck, bus, traffic light, and person) across

three levels of noise-degraded datasets based on BDD100K.

variation of object detection for the three noise-level datasets. The

evaluation metrics include MR (Fig. 8(a)) and FNR (Fig. 8(b)).
Based on Fig. 8, we observe that the detection performance (MR

and FNR) for cars, trucks, buses, traffic lights, and persons deterio-

rates as noise levels increase from “light” to “medium” to “heavy,”

although the degree of impact varies across different categories.

Specifically, the detection of cars and persons experiences mod-

erate changes in performance. In contrast, trucks and buses face

significant challenges, particularly under heavy noise conditions,

with sharp increases in both MR and FNR.
Figure 8(b) shows an FNR of 0 for traffic light detection, as no

traffic lights are detected in any noise-degraded dataset (i.e., FN = 0).

This highlights the difficulty of detecting small objects like traffic

lights under light noise, and their undetectability under medium or

heavy noise conditions.

4.1.3 Impact of In-Transit Noise Density. Next, within the same

noise size range, we assess the impact of varying noise densities

considering the mobility of vehicles. As discussed in Section 3.4.3,

we define the noise density factor ℓ ∈ [1, 2, 3, 4, 5, 6, 7, 8] according
to different vehicle speeds 𝑣 ∈ [10, 20, 30, 40, 50, 60, 70, 80] km/h.

Based on the value of ℓ , we generate eight experiment groups

for each noise level (i.e., light, medium, and heavy noise levels).

Similarly, we employ YOLOv9 for vehicle detection and person

detection, and evaluate MR and FNR for each experimental group.

Evaluation results of MR. Figure 9 illustrates vehicle and person

detection performance across eight noise levels. Higher speeds

increase MR for both detections, leading to more misses. Here,

“vehicle” includes cars, trucks, and buses. For vehicle detection

(Fig. 9(a)), MR notably rises at higher speeds across all noise levels.

A similar pattern is observed for person detection (Fig. 9(b)), where

higher speeds increase MR.

Evaluation results of FNR. Compared to MR, the FNR of vehicle

detection remains relatively stable with minor fluctuations as vehi-

cle speed increases under light and heavy noise levels. However,

it encounters a notable increase under medium noise conditions.

Comparing Fig. 9(a) and Fig. 9(b), the FNR for person detection

exhibits a more pronounced increase at higher speeds than vehicle

detection. This indicates that person detection is more adversely

affected by increased vehicle speeds under varying noise conditions.

4.2 Evaluation through CARLA Simulation
Next, for a fair comparison, we use the CARLA simulator to test

the performance of object detection under varying rainy scenarios

at different driving speeds. The intensity of the simulated rain is

set to 0%, 25%, 50%, and 75% of the maximum possible level, where

0% indicates a sunny, daytime scenario and the other three levels

represent “light,” “medium,” and “heavy” noise conditions.



Mitigating In-Transit Vision Noise for Enhanced Vehicle Safety SenSys ’25, May 6–9, 2025, Irvine, CA, USA

0.0

0.2

0.4

0.6

0.8

1.0

MR FNR

10 km/h 20 km/h
30 km/h 40 km/h
50 km/h 60 km/h
70 km/h 80 km/h

0.0

0.2

0.4

0.6

0.8

1.0

MR FNR

10 km/h 20 km/h
30 km/h 40 km/h
50 km/h 60 km/h
70 km/h 80 km/h

0.0

0.2

0.4

0.6

0.8

1.0

MR FNR
0.0

0.2

0.4

0.6

0.8

1.0

MR FNR

1.01 1

0.0

0.2

0.4

0.6

0.8

1.0

MR FNRMR FNR
( ) Medium

(a) Performance of vehicle detection across eight driving speeds.

(b) Performance of person detection across eight driving speeds.

MR FNR

(a) Perform
( ) Light

d

0.0

0.2

0.4

0.6

0.8

1.0

MR FNR( ) Heavy

MR FNR

(b) P f
( ) Light MR FNR

f d t ti i
( ) Medium

MR FNR

d
( ) Heavy

N/A

Figure 9: The performance (MR and FNR) of vehicle detection and person detection at different noise levels and driving speeds.

Here, “vehicle” includes cars, trucks, and buses, and “N/A” indicates no object (person) detected.

4.2.1 Experiment Groups. As discussed in Section 3.1, CARLA’s

built-in precipitation effects are not very realistic: CARLA does not

accurately depict raindrops but rather represents rain as multiple

streaks in the sky and wet road. At the highest level of 75%, the rain

streaks transform into rain columns, which are even less realistic.
To address the aforementioned unnatural visual noise in CARLA

and enhance noise diversity, we apply Algorithm 1 on the collected

CARLA sunny (clear) dataset (discussed in Section 3.1) to generate

noise-degraded data with three noise levels (i.e., light, medium,

and heavy). In addition, since we define the vehicle driving speed

ranging from 10km/h to 80km/h in CARLA, we do not need to apply

the noise density factor in Algorithm 1 here.
In this way, seven video clips are collected using CARLA. One clip

represents the sunny situation and serves as the ground truth (GT).

The remaining six clips are divided into two groups: (1) CARLA’s

built-in precipitation data with light, medium, and heavy precipita-

tion levels, labeled as “Light_CA,” “Medium_CA,” and “Heavy_CA,”

respectively, and (2) clips with noise created using our proposed

algorithms, with light, medium, and heavy noise levels, labeled

“Light_Our,” “Medium_Our,” and “Heavy_Our,” respectively.

4.2.2 Evaluation Metrics. To compare object detection counts be-

tween original sunny (clear) images and their noise-degraded coun-

terparts across various noise-level categories in CARLA, we utilize

the previously introducedMR as the evaluation metric. Here, Numcar

denotes the number of vehicles detected by YOLOv9, while NumGT

represents the ground truth count or the actual number of vehicles

present in the image.

4.2.3 Evaluation Results on CARLA Dataset. Fig. 10 illustrates the

variation in MR as vehicle speed increases, highlighting the chal-

lenges in maintaining detection performance at higher speeds and

under heavier noise conditions. Specifically, for light noise levels

(Light_CA and Light_Our), the MR remains low but increases as

speed rises. Medium noise levels (Medium_CA and Medium_Our)

have more pronounced impacts, with the MR increasing signifi-

cantly at higher speeds. Under heavy noise situations (Heavy_CA

and Heavy_Our), MR sharply increases, reaching nearly 100% above

40km/h, with detection becoming nearly impossible at higher speeds.

10 20 30 40 50 60 70 80
Light_CA 29.1 29.9 47.5 38.6 38.6 38.0 38.8 40.7
Light_Our 0.9 15.4 9.7 32.0 38.6 44.5 54.5 64.8
Medium_CA 17.5 14.7 32.3 39.5 41.4 38.9 41.8 41.8
Medium_Our 93.7 86.3 100.0 97.5 100.0 100.0 100.0 100.0
Heavy_CA 23.5 50.3 48.7 42.1 60.0 53.7 55.1 59.3
Heavy_Our 99.1 99.4 99.4 100.0 100.0 100.0 100.0 100.0
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Figure 10: The variation of the missing rate (MR) as vehi-

cle speed increases. The yellow curve indicates changes in

CARLA’s built-in precipitation data, while the green curve

indicates changes in the CARLA data with generated noise.

4.3 Evaluation on the Robotic Vehicle
After testing on the noise-degraded BDD100K dataset (Section 4.1)

and through CARLA simulation (Section 4.2), we further address

RQ1 using physical testbeds, specifically our assembled robotic

vehicle (shown in Fig. 4(b)).

4.3.1 Experiment Preparation on the Robotic Vehicle. SDVs have

over 150 million lines of software code for various applications, far

surpassing the codebase of traditional IoT devices [27, 65, 68].
To better manage SDV applications and their extensive codebase,

we introduce the service-oriented architecture (SOA) [52] to the

robotic vehicle. This allows applications to be decomposed into

Docker containers for deployment and orchestration on vehicle

computing units. We also use ROS 2 on the robotic vehicle, enabling

control of the vehicle’s wheels by publishing new topics, thus main-

taining the target speed [48]. Then, we deploy the PID method to

ensure the robotic vehicle follows a predefined path and speed.
In addition, considering the trade-off between accuracy and in-

ference time for vehicle applications [1, 35], we utilize SSD model

[40] with MobileNetv3 on the robotic vehicle, with weights trained
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on the COCO dataset. We also integrate the TensorFlow Object

Detection API [51] to process video footage and record the results.

4.3.2 Experiment Groups. As explained in Section 3.3, for testing

on the robotic vehicle, we collect autopilot track map data recorded

by the driving robotic vehicles. Similar to the previous tests, we

create three additional noise-degraded datasets by masking the

collected data with different noise levels: light, medium, and heavy.

4.3.3 Evaluation Metrics. When testing on the robotic vehicle in

the constrained testing area, the detection rate and MR evaluation

metrics are ineffective due to the limited size of the 2.8m × 3.2m au-

topilot track (as shown in Fig. 4(b) of Section 2.1 and Fig. 11(a)). The

confined space restricts the robotic vehicle’s ability to encounter

and detect a diverse range of objects, leading to a skewed detection

rate that does not accurately represent real-world conditions.
To address this, we record and calculate the average driving

distance at which the robotic vehicle first detected all surrounding

objects (e.g., truck, stop sign, traffic light as shown in Fig. 11(a)) for

each experiment at different speeds, instead of using the previous

MR metric. This adjustment is inspired by prior research showing

that braking distance is related to driving speed [10, 74], and by the

key principle of advanced driver assistance systems (ADAS), where

early detection of obstacles is critical for decision-making [42].
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(b) The average robotic vehicle's driving distance when all surrounding 
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Figure 11: The impact of driving speed and noise levels on

object detection in robotic vehicles. Here, N/A indicates that

the entire route was driven without detecting any objects.

As shown in Fig. 11(b), the driving distance to detect the first

object reflects the impact of in-transit noise on the SSD algorithm’s

effectiveness: a longer detection distance indicates greater difficulty

for the algorithm in identifying objects under noise conditions for

that experimental group. In this context, the distance is calculated

as 𝐼𝑛𝑑𝑒𝑥𝐹𝑟 ×𝑣, where 𝐼𝑛𝑑𝑒𝑥𝐹𝑟 denotes the video frame index at which

the first object is detected, and 𝑣 represents the robotic vehicle’s
original speed (Fig. 11(b)). The robotic vehicle speed is mapped

to real-world driving speed, enabling consistent SSD algorithm

evaluations under varying in-transit noise. A frame rate of 1 FPS

ensures consistent detection distance measurements.

4.3.4 Evaluation Results. Figure 11 (a) shows frame-by-frame SSD

detection on the robotic vehicle, while Fig. 11(b) illustrates how

noise levels and vehicle speed impact the detection distance for

surrounding objects. Longer average distances indicate poorer de-

tection ability. From Fig. 11 (b), we observe that at 10 km/h, the

vehicle is resilient to all noise levels, showing the shortest detec-

tion distances. At 20 km/h, the detection distance increases slightly,

reflecting a minor decline in effectiveness. Generally, higher speeds

and heavier noise lead to longer detection distances. At 30 km/h and

40 km/h under medium and heavy noise, the robotic vehicle fails

to detect any objects along the route, marked as N/A. This shows

that such noise levels severely impair detection effectiveness at

these speeds. This aligns with prior results from the noise-degraded

BDD100K dataset (Fig. 9) and CARLA simulation (Fig. 10).

5 TRANSITNET: “ONE-FOR-ALL”
In Sec 1.2, we analyze noise patterns at low and high speeds, show-

ing how they misdirect model attention and degrade fine-grained

details, leading to incorrect and missed detections. Small objects

are disproportionately affected, with experiments revealing that

YOLOv9 struggles more with detecting traffic lights and pedestrians

than vehicles under moderate noise (Fig.8 and Fig.9) due to their

smaller pixel occupancy [11]. To address this, we propose Transit-

Net to enhance vision task performance in noisy environments.

5.1 Proposed Methodology

5.1.1 YOLOv9 Structure and Challenges. Similar to its predecessors,

YOLOv9 [69, 71] comprises three main components: the backbone

network, feature pyramid network (FPN) [37], and head network.

Specifically, there are two key innovations: the programmable gradi-

ent information (PGI) framework and the generalized efficient layer

aggregation network (GELAN). To improve the accuracy of input-

target task mapping, PGI utilizes auxiliary reversible branches to

preserve essential deep features and maintain crucial shallow layer

characteristics during intensive convolution operations [8, 14, 19].

The GELAN architecture is designed to enhance object detection

performance with high efficiency and a minimal footprint. Together,

these enhancements improve the backbone’s ability to extract high-

quality features, boosting model performance.
However, YOLOv9 struggles with object detection in noisy envi-

ronments, particularly small ones [49, 71]. This limitation is partly

due to conventional downsampling operations (ADown) in the

backbone, which introduce information loss and increase the likeli-

hood of missed detections. Likewise, traditional convolution in the

GELAN module further degrades shallow spatial details, making

objects undetectable [80]. Moreover, YOLOv9 may overlook the

real-time SDV constraints, which require high processing speeds

and low memory overhead [30]. One potential factor contribut-

ing to this limitation is GELAN’s design, with its multiple parallel

convolutional paths and concatenation operations, significantly

increasing computational complexity and memory usage [17, 75],

posing challenges for real-time deployment.

5.1.2 TransitNet. To address these challenges, we propose Tran-

sitNet (In-Transit Noise Adaptive Network), inspired by YOLOv9,

integrating SPD-Conv and Self-Calibrated Convolution (SC-Conv)

(Fig. 12). TransitNet enhances the YOLOv9 backbone through a dual

approach: 𝑖) replacing standard convolutions with SPD-Conv, and

𝑖𝑖) substituting GELAN in the ninth layer with SC-Conv. SPD-Conv

preserves spatial information during downsampling, while SC-Conv

improves computational efficiency and feature representation.
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(1) SPD-Conv module. The loss of spatial distribution variance

and inability to preserve feature intensity are major limitations of

ADown, causing ineffective object detection. To address these issues,

the SPD-Conv method [60] incorporates strided convolutions and

pooling layers, utilizing a space-to-depth layer followed by a non-

strided convolution to enhance feature representation.
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Figure 12: The TransitNet architecture comprises two key

modules: SPD-Conv and SC-Conv. The SPD-Convmodule pro-

vides detailed operational functionality, while the SC-Conv

module enhances adaptability and robustness by dynami-

cally adjusting feature weights in response to the input.

Space-to-depth layer. This technique enables the transformation

method [57] to downsample feature maps within a CNN. Given an

𝑆 × 𝑆 ×𝐶1 feature map donated by 𝑋 , the process involves slicing

out a sequence of sub-feature maps based on a specified scale value

(Fig. 12, left-bottom).

Non-strided convolutional layer. After the space-to-depth opera-

tion, the intermediate featuremap𝑋 ′ with dimensions (𝑆/2, 𝑆/2, 4𝐶1)

proceeds to a non-strided convolutional layer with a stride of 1.

This layer uses𝐶2 filters, where𝐶2 < 4𝐶1. The stride of 1 preserves

discriminative feature information, ensuring symmetrical sampling

from each row or column of the feature map and maintaining the

size of each sampled pixel by using an 𝑛 × 𝑛 filter (e.g., 3 × 3).

(2) SC-Conv module. It comprises four main processes: channel

reduction, convolution, latent space calibration, and channel ex-

pansion [39]. Initially, the channel reduction module decreases the

number of channels in the feature map, reducing computational

complexity while preserving essential feature information. The fea-

ture map then proceeds through a convolution layer for enhanced

feature extraction, enriching its representation for the following

stages. During the latent space calibration stage, the feature map

undergoes down-sampling and is mapped into latent space, where

calibration convolution refines it to mitigate information loss. Fi-

nally, the channel expansion stage restores the channel count, en-

suring consistency between output and input dimensions, making

it well-suited for integration within the YOLOv9 architecture.
Compared to GELAN, it offers a lightweight design with precise

feature calibration and layer-by-layer feature integration. Then, it

minimizes computational overhead by reducing unnecessary inter-

layer connections and complex aggregation operations, enabling

precise feature adjustment with minimal computational demand.

This makes it highly suitable for resource-constrained environ-

ments that require efficient yet refined feature representation.

(3) Integration of SPD-Conv and SC-Conv modules with the

backbone. The backbone extracts accurate features from images

[41, 78], which are processed by the feature pyramid network (FPN)

[37] to create multi-scale feature maps. These maps integrate high-

level semantics with low-level spatial details, preserving resolution

across object scales [61, 62, 73, 79] and contributing to the auxil-

iary PGI branch for improved performance. While adding deep-to-

shallow layer connections enhances accuracy, it increases inference

time by 20% [69]. To address this, we incorporate the SPD-Conv

module at the eighth layer, enriching backbone features without

adding inference time. Additionally, replacing GELAN with the

SC-Conv module establishes long-range spatial and inter-channel

dependencies, improving feature representation.

5.2 Testing of TransitNet
To address RQ3, we assess the accuracy and inference speed of

TransitNet by comparing it with multiple mainstream and state-

of-the-art methods, such as SSD [40], RT-DETR [81], D-FINE [53],

etc. We evaluate across different datasets, considering scenarios

involving inclement weather, unexpected occlusions, and varying

driving speeds. Moreover, we test TransitNet using our real-world

driving dataset, which includes a wide range of speeds from 0km/h

to 96km/h across both urban and highway environments.

5.2.1 Testing with Inclement Weather Noise. Based on our previous

finding that medium-level inclement weather noise significantly

affects object detection in SDV (Fig. 9), we aim to further quantify

the effectiveness of our proposed TransitNet model in handling

datasets most affected by this type of noise.

Testingmetrics.We train each model, including TransitNet, Faster

R-CNN [54], SSD [40], D-FINE [53], RT-DETR [81], and YOLOv9 [69]

models specifically on medium noise-degraded images from the

BDD100K dataset. These models are tasked with detecting vehi-

cles, traffic lights, and pedestrians. We use the original (untrained)

YOLOv9’s detections as GT. Predictions with an intersection-over-

union (IoU) [55] greater than 0.5 are considered true positives (TP).

Evaluation metrics include precision, F-measure, mAP@50, Giga

Floating Point Operations (GFLOPs), and FPS, defined as follows:

Precision = TP
TP+FP Recall = TP

TP+FN

F-measure = 2∗Precision∗Recall
Precision+Recall mAP@50 = 1

N

∑N
i=1 AP@50i

Here, 𝑁 denotes the total number of categories, and mAP@50

represents the mean average precision at an IoU threshold of 0.5. In

machine learning, GFLOPs measure the total floating-point opera-

tions (in billions) a model performs, indicating its computational

complexity and resource demands. Higher GFLOPs generally imply

more intensive computation. Additionally, a higher FPS signifies

faster processing, which is essential for SDV applications. To stan-

dardize computational complexity comparisons, we use a 640 ×

640 input size for all models. Each convolution operation involves

a multiplication and addition; therefore, we double the GFLOPs

count to reflect both, following the convention in YOLOX [5, 7, 18].

(1) Quantitative results. Table 1 provides a comprehensive evalu-

ation, divided into two sections: 𝑖) a comparison of TransitNet with

mainstream and SOTA methods, presented in the upper section

above the dashed line; and 𝑖𝑖) ablation study results in the lower

section, analyzing the impact of specific modifications within YOLO

model variants, including YOLO-SPD, YOLO-SC, and TransitNet.
As shown in Table 1, the comparison experiments reveal that

TransitNet surpasses all other models in accuracy. Specifically, Tran-

sitNet achieves the highest mAP@50 (0.87), outperforming D-FINE-

X (0.81) and RT-DETR (0.78). As mentioned before, there is a trade-

off between accuracy and speed in SDV. Although SSD achieves
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the highest FPS (129.33), it falls short in detection accuracy relative

to the YOLO-series models. Therefore, we focus on the YOLO series

models in the following evaluations and further discuss the reasons

behind their performance in Sec. 6.

Table 1: Comparative analysis of multiple models and abla-

tion study of YOLO variants across key evaluation metrics.

Model F-measure mAP@50 GFLOPs FPS

Faster R-CNN [54] 0.11 0.28 201.08 68.28

SSD [40] 0.44 0.49 281.97 129.33

D-FINE-L [53] 0.47 0.51 91.674 45.12

RT-DETR [81] 0.72 0.78 259.31 67.01

D-FINE-X [53] 0.77 0.81 205.42 36.06

YOLOv9 [69] 0.79 0.84 237.70 47.62

YOLO-SPD 0.81 0.85 243.70 60.98

YOLO-SC 0.80 0.84 239.14 65.79

TransitNet (Ours) 0.83 0.87 236.40 74.63

Among the ablation study, each variant demonstrates improve-

ments over YOLOv9, with TransitNet showing particular advan-

tages by combining the strengths of YOLO-SPD and YOLO-SC

(Table 1). Specifically, YOLO-SPD achieves a high F-measure (0.81)

and mAP@50 (0.85), while YOLO-SC offers an optimal balance

between accuracy and efficiency, reaching the highest mAP@50

(0.84), a solid F-measure (0.80), competitive FPS (65.79), and lower

GFLOPs (239.14) compared to YOLO-SPD (243.70). TransitNet sur-

passes both, achieving the highest F-measure (0.83) and mAP@50

(0.87) across all models while maintaining an efficient FPS (74.63)

and a relatively low GFLOPs (236.4). These results underscore the

effectiveness of YOLO-SPD, YOLO-SC, and especially TransitNet in

delivering both high accuracy and computational efficiency.

(2) Testing with critical driving speeds. Previous research high-

lights that the performance gap in MR and FNR between driving

speeds of 40km/h and 50km/h is particularly significant compared

to other speed ranges, as illustrated in Fig. 9. Building upon this

finding, we conduct an in-depth evaluation of the MR and FNR of

each model for vehicle and person detection at these two speeds

under medium-level inclement weather conditions, as shown in

Fig. 13. The result reveals that our proposed methods outperform

YOLOv9 in both MR and FNR across the two speeds, with particu-

larly lowMR values in person detection at 50 km/h, highlighting the

robustness of the TransitNet model under challenging conditions.
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Figure 13: The MR and FNR of the vehicle and person de-

tection at two important speeds (40km/h and 50km/h) with

medium-level inclement weather noise.

As shown in Fig. 13, YOLOv9 experiences a significant increase

in both MR and FNR at higher speeds, while our proposed models

(YOLO-SPD, YOLO-SC, and TransitNet) consistently maintain or

improve performance. For vehicle detection, YOLO-SPD and YOLO-

SC keep the MR as low as 0.02 at both 40km/h and 50km/h, whereas

YOLOv9’s MR rises sharply to 0.67 at 50km/h. Among our mod-

els, TransitNet achieves the best overall performance, maintaining

low MR and FNR values across both vehicle and person detection,

even at higher speeds. Specifically, for person detection, TransitNet

holds steady MR values and achieves the lowest FNR, significantly

outperforming YOLOv9, which reaches 0.75 at 50km/h.

5.2.2 Testing with Unexpected Occlusion Noise. Next, we focus

on testing the proposed TransitNet algorithm under unexpected

occlusion conditions. Fig. 14 illustrates MR and FNR for vehicle and

person detection under unexpected occlusion noise, comparing the

YOLOv9-Ori, YOLOv9, YOLO-SPD, YOLO-SC, and TransitNet.
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(a) Vehicle and person MR in occlusion. (b) Vehicle and person FNR in occlusion.

Figure 14: The MR (a) and FNR (b) of vehicle and person

detection with unexpected occlusion noise.

In this test, the dataset is generated with unexpected occlusion

noise caused bymud (Fig. 7). As shown in Fig. 14, TransitNet demon-

strates a notable improvement in both MR and FNR for vehicle and

person detection compared to YOLOv9-Ori and YOLOv9. These

results highlight that TransitNet significantly enhances detection

accuracy under unexpected mud occlusion noise, outperforming

YOLOv9 in both vehicle and person detection.

5.2.3 Testing with Real-World Driving Datasets. As detailed in Sec-

tion 3.3, we collect diverse real-world driving videos using an in-

ternal camera. These videos capture driving scenarios under both

sunny and rainy conditions along identical routes in urban and

highway settings, varying in traffic volumes and densities. Hence,

we further validate our proposed solution, TransitNet, using this

comprehensive real-world driving dataset, covering a wide range

of driving speeds from 0km/h to 96km/h. The detection results of

YOLOv9 in sunny datasets are treated as the baseline.

(1) Quantitative analysis. Table 2 compares the detection rates

of YOLOv9 (baseline) and TransitNet in real-world rainy driving

datasets across urban and highway environments. TransitNet shows

significantly superior detection performance under rainy conditions

in Table 2. In this context, a lower MR reflects enhanced model

performance. Specifically, TransitNet achieves nearly twice the

reduction in MR compared to YOLOv9 in urban environments for

both vehicles and traffic lights. On highways, TransitNet further

boosts vehicle detection accuracy by approximately 40% compared

to YOLOv9, achieving a substantial MR reduction from 95.24% to

4.77%. We also perform similar experiments in sunny conditions,

covering identical routes in both urban and highway. Our model

also consistently outperforms YOLOv9 on sunny days.

Table 2: MR of YOLOv9 (baseline) and TransitNet (our solu-

tion) in real-world rainy driving datasets.

Model Urban Highway MR (Vehicle) MR (Traffic Light)

YOLOv9 � 81.50% 71.20%

TransitNet (Ours) � 58.93% 49.64%

YOLOv9 � 51.92% 95.24%

TransitNet (Ours) � 32.69% 4.77%
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(2) Detection visualization. Figure 15 presents detection examples

in real-world rainy-day scenarios under both urban and highway

conditions. In the urban scenario, our model successfully recognizes

traffic lights that YOLOv9misses. Similarly, in the highway scenario,

our model outperforms YOLOv9 in detecting vehicles under heavy

rain, where YOLOv9 fails to detect them effectively. Thus, both

Table 2 and Fig. 15 underscore TransitNet’s robustness and superior

performance in challenging real-world conditions.

Traffic Light  0.55
0.69

0.52 0.62

Traffic Light
0.32

Vehicle 0.68

YOLOv9 Our YOLOv9 Our
(a) Detection examples under urban scenario. (b) Detection examples under highway scenario.

Figure 15: The real-world detection examples of YOLOv9 and

our model under urban and highway conditions.

6 OBSERVATIONS AND DISCUSSIONS
In this section, we illustrate and summarize our answers to RQ1,

RQ2, and RQ3, discuss the main observations, and present our

explanation for our experiment results and observed trends.

★ Observation 1: As vehicle speed increases, the camera-based ap-

plication’s ability to accurately detect objects diminishes, with a more

severe impact on person detection compared to vehicle detection.

This observation answers RQ1 and is supported by Fig. 9 on

BDD100k, Fig. 10 on CARLA, and Fig. 11(b) on the robotic vehicle.
With rising speed, both vehicle and person detection experience

increases inMR and FNR (Fig. 9) as well as the decreases in detection

rate (Fig. 10), and the impact is more pronounced for pedestrian

detection (Fig. 9). Similarly, we observe that at low speeds, the

vehicle demonstrates resilience to all noise levels, maintaining the

shortest detection distances (Fig. 11(b)). However, at high speeds,

the robotic vehicle increasingly struggles to detect objects along

the entire route, often failing to identify any (Fig. 11(b)).
Discussion: At high speeds, capturing clear images and retaining

key information can become challenging, even in the absence of

noise. SDVs need to consider these issues, particularly under in-

clement weather and unexpected occlusion conditions. High-speed

motionmay further exacerbate these challenges, as rapid movement

can introduce motion blur and potentially reduce the effectiveness

of object detection algorithms. One possible reason is that a faster-

moving vehicle decreases the relative exposure time per frame,

which can lead to streaking artifacts that obscure object boundaries.

Additionally, rapid (i.e., high-speed) motion may reduce the number

of consecutive frames in which an object remains within the field

of view, thereby limiting the temporal redundancy that tracking

algorithms often leverage for robust detection.

★ Observation 2: 40km/h may be considered a threshold for safe

urban driving speed to ensure accurate camera-based applications in

SDVs under different noisy conditions.

This observation also answers RQ1 and is backed by both Fig. 9,

Fig. 10, and Fig. 11(b). It shows that when speeds exceed 40km/h,

especially under medium and high noise levels, both MR and FNR

for vehicle and person detection increase sharply (Fig. 9), while

the detection rate drops significantly (Fig. 10). Besides, at 40km/h

under medium and heavy noise scenarios, the robotic vehicle fails

to detect any objects along the entire route (Fig. 11(b)).

Discussion: Vehicle motion amplifies inclement weather noise

(raindrops and snowflakes). Though initially small, these particles

accumulate within a grid, intensifying their impact and disrupting

the model’s learning from shallow layers, where initial feature

extraction occurs. This observation highlights the need for models

to handle medium-sized noise effectively, which is often overlooked.

While individual particles seem insignificant, their collective impact

challenges detection, especially at speeds over 40 km/h. Higher

speeds increase noise frequency and density, degrading detection

and emphasizing robust noise handling in model design.

★ Observation 3: The impact of inclement weather noise is more

significant than unexpected occlusion noise for SDVs, particularly

when the vehicle is in motion.

This observation answers RQ1 and is supported by compar-

isons among Fig. 8, Fig. 9(a), Fig. 9(b), and Fig. 14, suggesting that

sparse and high-intensity noise (inclement weather noise) can pose

significant challenges for SDVs.
Discussion: When the vehicle is static, both person and vehicle

detection are impeded, though the severity decreases in that or-

der (Fig. 8 and Fig. 14). This may be due to YOLO’s challenges in

detecting objects occupying small pixel areas, as the limited contex-

tual information available for these targets can affect recognition.

Additionally, the reduced feature representation of small objects

may make it more difficult for the model to differentiate them from

background noise, potentially lowering detection accuracy.
In addition, higher speeds may increase the likelihood of in-

clement weather (raindrops or snowflakes) partially or fully cov-

ering the lens, potentially making weather conditions more chal-

lenging to handle than unexpected occlusions (Fig. 9(a), Fig. 9(b),

and Fig. 14). While unexpected occlusion noise typically affects

only a specific area, inclement weather noise is dynamic and can

impact the entire frame. This type of noise may disrupt the rela-

tionships between grid cells, particularly when detecting objects

such as pedestrians, thereby increasing the difficulty of detection.

★ Observation 4: Compared to YOLO variants, TransitNet achieves

higher accuracy and FPS, maintaining performance in challenging

conditions. It closes the detection gap between 40 km/h and 50 km/h

in noisy environments, significantly reducing MR and FNR for vehicle

and pedestrian detection, even under occlusions and inclement weather

conditions. TransitNet also ensures robust and consistent performance

across both urban (low-speed) and highway (high-speed) scenarios.

This observation confirms RQ2 and RQ3, supported by Table. 1,

Fig. 13 (inclement weather situation), Fig. 14 (unexpected occlusion)

and Fig. 15 (real-world rainy day data).
Discussion: Replacing the original ADown operation with SPD-

Conv enhances our proposed model’s ability to detect more objects

(e.g., traffic lights and pedestrians) during driving by preventing

the loss of spatial distribution variance and preserving the feature

intensity, both of which are critical for accurate small object de-

tection. Additionally, the SC-Conv module addresses a common

limitation of channel attention mechanisms, which tend to prior-

itize objects with larger areas or more prominent features while

overlooking small object features. Specifically, SC-Conv overcomes

the limitations of standard convolutions (e.g., 3 × 3 convolutions)

in the GELAN module, which primarily captures local features, by
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introducing self-calibrated weights. As a result, TransitNet’s en-

hanced ability to identify relational patterns significantly improves

detection performance in noisy and rainy conditions, addressing

diverse camera noise challenges.

★ Observation 5: The success of TransitNet lies in striking a balance

between high detection accuracy and fast processing speeds, achieved

through comparisons with mainstream and advanced models.

This observation confirms RQ3 and is affirmed by Table. 1.
Discussion: The precision gap between the two-stage detector

(Faster R-CNN) and one-stage models (SSD and YOLO) on the

BDD100K dataset highlights architectural differences. Faster R-

CNN is more prone to data labeling errors and demands greater

computational resources [38], limiting its performance in complex

traffic scenarios. While SSD shares YOLO’s one-stage design, it

falls short in detection accuracy, making it less suitable for chal-

lenging conditions. Though RT-DETR demonstrates strong global

feature modeling capabilities, its higher computational cost and

limited performance on small object detection present challenges

in resource-constrained and fine-grained detection scenarios.
D-FINE-L, a lightweight version of D-FINE, has lower compu-

tational demands, making it suitable for resource-constrained en-

vironments. However, as shown in the Table. 1, it falls short in

accuracy, which may limit its accuracy in more demanding detec-

tion tasks. Generally, lower GFLOPs result in higher FPS, as reduced

computation per frame speeds up processing. However, FPS also

depends on the network’s structural design and optimization. This

explains why D-FINE-L, despite achieving the lowest GFLOPs, has

the lower FPS. The D-FINE-X focuses on higher detection accu-

racy, showing an improvement over D-FINE-L. Yet, this comes at

the cost of computational efficiency, resulting in reduced real-time

performance. It is more suitable for scenarios where accuracy is

prioritized over strict real-time requirements.
Compared to the above models, YOLO’s architecture excels in

robust feature extraction and adapts well to diverse, noisy environ-

ments, achieving high precision [34, 64]. However, it faces chal-

lenges in detecting small objects, often missing traffic lights or

pedestrians, and its FPS performance remains suboptimal. Transit-

Net is specifically designed to overcome its limitations in detecting

small objects and managing dynamic noise efficiently to meet real-

time tasks. The proposed model introduces enhanced relational

pattern modeling, enabling more accurate detection of small-scale

targets even under inclement weather or unexpected occlusion

noise. By incorporating advanced feature aggregation and adap-

tive noise handling mechanisms, TransitNet demonstrates superior

accuracy in addressing in-transit challenges, managing diverse cam-

era noise and real-world rainy conditions across low-speed and

high-speed scenarios. This adaptability makes it particularly ef-

fective for complex scenarios where traditional models struggle,

ensuring both robustness and precision in object detection.

7 RELATEDWORK
In recent years, advancements in deep learning and sensor tech-

nology have propelled autonomous driving to levels 3 and 4 [9, 28,

29, 72]. Despite Tesla’s claims of achieving level 4 autonomy, re-

ports [22, 23] indicate that severe weather conditions like heavy fog,

continuous rain, blizzards, sandstorms, and low-light conditions

cause significant fluctuations in image and video quality. Raindrops,

for example, create patterns on images, decreasing intensity and

blurring underlying details [45]. Similarly, heavy snow and hail

increase image intensity, obscuring objects and making them un-

recognizable. The mainstream solutions for object detection, such

as YOLO [69] and Faster R-CNN [54], enable rapid target detection

even in noisy environments [67]. However, despite their effective-

ness, these methods heavily rely on the training datasets, which

limits their generalization ability in unseen noisy environments.

This limitation may stem from the scarcity of relevant datasets,

which is largely due to the high cost and time required to collect

appropriate data. As a result, models are often trained on limited

conditions, which leads to poor generalization in unseen scenarios.

For example, models trained on conditions with 10mm/h precipita-

tion or synthetic images exhibit low accuracy when encountering

precipitation exceeding 10mm/h.
To address this challenge, synthetic visual data provides a viable

solution for advancing research and improving model performance

[16]. For instance, CNN models have been used to generate syn-

thetic fog for studying de-fogging in traffic scenarios [58], while

extensive research has focused on developing synthetic rain models

[15, 36, 37, 70]. Yet, these studies primarily target specific weather

conditions rather than encompassing a comprehensive range of

scenarios. On the other hand, ne study has proposed approaches

for vehicle detection and tracking in adverse weather conditions

[21]. However, all of these works overlook the critical influence of

vehicle speed on detection performance.
To the best of our knowledge, prior research has neither explicitly

evaluated nor quantified the impact of vehicle speed on perception.

A notable exception is only one prior study [74] has incorporated

vehicle speed during experimental testing; however, it treats speed

merely as a parameter without providing a detailed quantitative

analysis of its effects. To bridge this gap, our work provides an

extensive analysis of how noise patterns at varying speeds affect

camera-based perception, along with quantitative evaluations to

ensure the safe and efficient operation of SDVs at higher speeds.

8 CONCLUSION
This study provides an extensive analysis of the impact of vehicle

speed and in-transit camera noise on vision tasks, utilizing diverse

testing environments, involving BDD100K dataset, CARLA simula-

tor, a robotic vehicle, and a real vehicle. Our findings highlight that

increased speed amplifies the challenges of object detection, with

a notable performance drop at speeds above 40km/h, particularly

in detecting smaller objects like pedestrians. To address these chal-

lenges, we introduce TransitNet, a novel model integrating SPD-

Conv and SC-Conv, excelling in object detection under adverse

weather and occlusion noise, with extensive testing confirming its

robustness and generalizability. Designed as a general framework,

TransitNet has the potential to be applied across various domains

requiring small object detection.
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