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Abstract—Connected vehicles (CVs) face significant challenges
in continuous big data transmission, resulting in high transmis-
sion bandwidth costs and impacting real-time decision-making.
To address this, we propose two dynamic, driving-aware compres-
sion mechanisms based on reinforcement learning and temporal
compressive sensing to intelligently compress video data. These
mechanisms adapt to driving conditions, reducing bandwidth
while preserving sufficient information for accurate applications
such as object detection and ensuring high-quality reconstruction
when needed. We also implement a Vehicle-EdgeServer-Cloud
(VEC) closed-loop framework that integrates these mechanisms.
Specifically, a lightweight vehicle model performs real-time detec-
tion on compressed data (measurements), while the EdgeServer
receives measurements and reconstructs scenes if needed. The
measurements, reconstructed video, and analysis results are then
sent to the cloud for vehicle model updates. Unlike conventional
methods, our framework seamlessly adapts across vehicles, Edge-
Servers, and the cloud, supporting efficient data transmission and
dynamic model updates. Extensive evaluations were conducted
on our designed roadside unit platform and robotic vehicle, both
equipped with industry-grade sensors and computing units. The
results demonstrate an 18× reduction in bandwidth at 320KB/s
while maintaining high detection accuracy and reconstruction
quality compared to non-adaptive measurements, highlighting
the framework’s promising real-world applications for CVs.

Index Terms—Connected vehicles, compressed video, reinforce-
ment learning, temporal compressive sensing.

I. INTRODUCTION

As vehicle computing [1] and the 5G era unfolds, connected
vehicles (CVs) are swiftly transforming the automotive indus-
try, with emerging intelligent services driving the requirements
for fast data processing and low-bandwidth communication
[2], [3], in the face of high data volume. Estimates predict that
by 2025, up to 400 million new vehicles will be connected [4].

Astronomical transmission bandwidth. The rapid advance-
ment of Vehicle-to-Everything (V2X) technologies enables
vehicles to communicate with edge servers and cloud infras-
tructures, enhancing road safety and collision avoidance [5].
For instance, by leveraging V2X, GM’s Super Cruise enhances
the sensing capabilities of autonomous vehicles, a type of
CV [6]. In addition, to enable the commercial deployment
of connected and autonomous vehicles on public roads, it is
mandatory to ensure continuous data transmission for model
training and teleoperation (e.g., remote assistance) [1]. Hence,
transmission costs can skyrocket: projections indicate that by
2025, CVs will transmit up to 10 exabytes of data per month, a
volume at least 1,000 times greater than current levels [4]. A
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Fig. 1. A simplified illustration of the Vehicle-EdgeServer-Cloud
(VEC) closed-loop framework. Both a cellular tower and a RSU can
be considered as the EdgeServer.

recent Guidehouse Insights report estimates that 10 million
vehicles can transmit over 20 petabytes of data annually,
incurring costs exceeding $1 billion [7], [8]. These escalating
data transmission costs, compounded by network congestion
and increased latency, present substantial challenges for CVs.
Latency-sensitive automotive applications. The success of
CV systems hinges on the ability to make reliable real-time
decisions. According to [9], an autonomous vehicle traveling
at 40km/h in an urban environment requires a response time of
less than 100ms to maintain control every 1 meter. Moreover,
previous experiments have shown that to proactively plan a
route to avoid an obstacle 5 meters ahead, the computing
latency must be under 164ms [10]. Failure to meet these
latency requirements can result in significant safety risks.
Powerful and resource-hungry applications. However, to-
day’s CV frameworks are not optimized to handle the in-
creasing volume of data and efficiently support emerging au-
tomotive intelligent services [4]. The main reason is that most
neural networks focus on boosting accuracy at the expense of
substantially increased model complexity [11], [12]. For ex-
ample, Inception [13] and ResNet [14], which leverage deeper
layers to extract hierarchical features, can reach dozens or even
hundreds of layers to outperform previous networks, and a
single layer may require millions of matrix multiplications.
Such heavy calculation brings pressure on computing systems
in terms of performance and energy consumption.
Computation-constrained vehicles. To achieve high vehi-
cle computing speeds, a common approach is to enhance
computation capability by adding more advanced computing



units. However, this approach is neither feasible nor practical
for CVs as it significantly increases loading, building, and
maintenance costs [1]. In the United States, the average cost
to build a traditional non-luxury vehicle is roughly $30K,
whereas the cost for a connected and autonomous vehicle is
approximately $250K, with sensors and computing platforms
accounting for almost two-thirds of the total price [1]. These
high costs lead to declining consumer demand and reduced
profitability for vehicle manufacturers.
In-transit Communication. Despite the rapid development
of communication technologies such as Dedicated Short
Range Communication (DSRC) [15], WiFi, LTE, and Cellular-
Vehicle-to-Everything (C-V2X) [16], achieving ultra-fast, low-
bandwidth communication for distributed and moving CVs
remains challenging, particularly for video analysis [1]. In this
context, the key point is to reduce data transmission volume,
which is the most direct and effective method for ultra-fast
and low-bandwidth V2X communication [1].

Bearing these concerns in mind, we design and implement a
closed-loop framework (Fig. 1), the Vehicle-EdgeServer-Cloud
(VEC), which incorporates EdgeServers, like roadside units
(RSUs) [17], to provide efficient and stable communication.
RSUs are typically deployed along roadways to enable short-
range communication with vehicles, facilitating faster data
transmission. Besides, given that vehicles are in motion and
may experience inconsistent connectivity with the cloud, RSUs
enhance communication reliability by reducing packet loss.

Our main objective is to reduce data transmission bandwidth
by employing an adaptive temporal compressive sensing (TCS)
technique that transmits only compressed images, referred to
as measurements, for vehicle applications, while also provid-
ing an alternative and novel method to facilitate real-time
computational capabilities in CVs. In this work, we choose a
mainstream vehicle application, i.e., object detection, as a use
case. The key contributions of this work are listed as follows:
• We design and implement a VEC closed-loop framework
to integrate TCS, edge computing, and CVs. On the vehicle
side, a lightweight deep learning model is tasked with per-
forming real-time video processing (e.g., object detection)
on the measurements with adaptive TCS based on the current
driving environment. The EdgeServer is designed to recon-
struct the original video data upon the activation of a trigger
(e.g., when the number of surrounding vehicles detected
exceeds three). Meanwhile, results from the EdgeServer will
be sent to the cloud with the saved measurements to update
the lightweight deep learning model for vehicles, ensuring
continuous improvement in performance and efficiency.

• We propose and test two reinforcement learning (RL) poli-
cies to dynamically determine the optimal compression ratio
(Cr) in both urban (low-speed) and highway (high-speed)
scenarios (Sec. IV-A). Our experimental results demonstrate
the effectiveness of adaptive TCS compared with non-
adaptive TCS. In addition, we train and compare two state-
of-the-art (SOTA) reconstruction models with different Cr,
i.e., E2E-CNN and BIRNAT (Sec. III-E).

• The absence of experimental platforms (e.g., vehicles and
RSUs), has led most research to rely on simulation-based
experiments, which often fail to address real-world appli-
cation requirements and testing. To address this gap, we
design and develop two real-hardware platforms equipped
with industry-grade computing units and sensors: i) an
EdgeServer computing platform and ii) a robotic vehicle
(described in Sec. III-C). These testbeds replicate real-world
vehicle conditions, enabling comprehensive evaluation.

• We conduct comprehensive testing across various compres-
sion ratios (Cr = 6, 8, 10, 15, 20), evaluating detection accu-
racy (Sec. IV-A), inference latency (Sec. IV-D), transmission
bandwidth (Sec. IV-E), and CPU and memory utilization
(Sec. IV-F). Our proposed framework with adaptive TCS,
even when constrained by limited bandwidth as low as
320KB/s, results in an 18× bandwidth reduction, while
maintaining as good accuracy as algorithms that process
video data in the uncompressed realm.

The rest of the paper is organized as follows: related works are
reviewed in Sec. II. Sec. III describes the framework design,
experiment setup, and comprehensive implementation step by
step. Evaluation results and discussion are presented in Sec. IV
and Sec. V, respectively. Finally, Sec. VI concludes the paper.

II. RELATED WORK

A. Background of Temporal Compressive Sensing

In video TCS, the high-speed frames of a video are modu-
lated at a higher speed than the capture rate of the camera [18].
These modulated frames are then compressed into a single
measurement. With knowledge of the modulation, multiple
frames can be reconstructed from every single measurement.
Fig. 2 shows the pipeline of TCS. The Cr video frames
(top-left) are modulated by Cr different modulation patterns
(bottom-left) and then compressed to a single compressed
measurement shown in the top-right. Mathematically, let
Xk ∈ RNx×Ny denote the k-th video frame, ∀k = 1, . . . Cr.

Fig. 2. The pipeline of temporal compressive sensing (TCS).

During the TCS capture, within one exposure time, each
frame is modulated (element-wise product) by a unique pattern
Xk ∈ RNx×Ny , ∀k = 1, . . . , Cr. These frames (top-middle)
are then summed to a single measurement Y ∈ RNx×Ny

captured by the detector (CCD or CMOS camera). The forward
model is Y =

∑Cr
k=1 Xk ⊙ Mk + G, where ⊙ denotes the

element-wise product and G denotes the measurement noise.
Here, the element-wise product operation of the TCS capture is
computationally simple, resulting in much lower overhead and
latency compared to more complex machine-learning methods.



B. Adaptive Temporal Compressive Imaging
Considering the real-world application of measurement-

based object detection for CVs, a higher value of Cr is
normally selected to pursue a faster inference speed at the ex-
pense of lower detection accuracy and reconstruction quality.
However, in this work, we strike a balance between Cr, the
driving environment, and related performance, which calls for
adaptive TCS [19], [20]. Unlike previous works that conduct
adaptive TCS in the spatial domain [21], [22], we achieve
adaptive TCS in the temporal domain to determine the optimal
Cr before compression and reconstruction. Only one paper
[23] considers a similar problem, but only estimates the motion
of the objects to adapt Cr with a look-up table. It also does
not take account of driving scene complexity. To the best of
our knowledge, this is the first work to deploy adaptive TCS
on CVs for efficient data transmission under varying driving
conditions (e.g., fast-motion and slow-motion scenarios).

C. Video Reconstruction
As discussed in Sec. II-A, after the TCS camera captures

Y (bottom-right of Fig. 2), the next task is to perform
reconstruction, which aims to estimate Xk from Y using the
given measurement matrix Mk. Various reconstruction models
have been developed to predict original high-speed video
frames from a single measurement, a process known as video
reconstruction [24]. With the advancements in deep learning
algorithms, several deep learning-based reconstruction models
have been proposed [25]–[27]. Among them, E2E-CNN [28]
(End-to-End Convolutional Neural Network) set a new bench-
mark by achieving millisecond-level reconstruction for video
TCS. Recently, BIRNAT [29] (Bidirectional Recurrent Neural
Networks with Adversarial Training) is introduced, bridging
the gap between reconstruction quality and speed by fully
exploiting the correlation between high-speed video frames
to enhance reconstruction quality. While the aforementioned
models demonstrate impressive performance in terms of recon-
struction quality and speed, their testing is primarily conducted
on general video data or simulations, rather than on vehicles
or real hardware. Moremore, previous testbeds ignore the
constraints of CPU and memory resources when executing
these tasks. However, considering the limited computational
resources available in vehicles, such hardware limitations
should be taken into account for practical applications.

D. Object Detection and Tracking
1) Object Detection: Despite advances like YOLOv10 [30],

YOLO models struggle to balance accuracy and speed due to
CV hardware limitations. While deep-to-shallow connections
enhance accuracy, they also increase inference time by up
to 20% [31]. Given the computational constraints and time-
sensitive requirements of CV applications, YOLOv3, which
shares the Darknet-53 backbone network with YOLOv10 and
incorporates multi-scale features for object detection, achieves
an optimal balance between accuracy and speed [32]; thus,
we select the YOLOv3 model to be executed on dynamic
measurements for our case study (object detection).

2) Overview of Multi-Object Tracking: Tracking after de-
tection. Tracking safety-critical targets, such as front vehicles
and pedestrians, is crucial for ensuring safe driving [33].
“Tracking-after-detection” methods are widely used to solve
multi-object tracking (MOT) problems [34]–[36]. Most main-
stream MOT approaches [37], [38] firstly detect all targets
for each frame before tracking targets through bounding box
(bbox) association. Here, bbox association involves matching
the detected bboxes across consecutive frames. SORT [39]
analyzes object tracking results and computes the associated
appearance descriptors of objects within each frame to keep
tracking. Later advancements like Deep SORT [40] are pro-
posed to reduce the number of identity switches caused by long
periods of occlusions, preventing the tracking system from
mistakenly assigning one object’s identity to another when
objects are temporarily blocked from view.
Joint detection and tracking. Recent trends in MOT tasks are
to convert existing detectors into trackers, thereby integrating
both tasks within the same framework [41], [42]. For example,
CenterTrack [41] tracks objects as points, jointly learning
detection and association, while Tracktor [42] propagates
object identities through bbox regression, eliminating the need
for bbox association. Moreover, methods like stacking video
frames [43] and feature warping [44], improve detection
accuracy and accelerate inference. Yet, these works overlook
the essential consideration of latency. Only one study aligns
closely with our approach, improving Deep SORT for vehicle
tracking [45] but still neglecting the crucial issue of latency,
which is vital for real-time applications.

E. Additional Gaps in Previous Work

Within the VEC framework, although previous studies ex-
plored computing frameworks between vehicles and the cloud
[46], or between vehicles and EdgeServers, these frameworks
are inherently open-loop, lacking mechanisms to mitigate a
system’s sensitivity to external disturbances. For example,
collaborative cloud-vehicle computation systems enable vehi-
cles to pull compressed models from the cloud for driving
behavior modeling [46]. However, they overlook the “push”
process from the vehicle to the cloud. Similarly, recent stud-
ies have emphasized computation offloading [47], [48]. Yet,
they neglect bidirectional data transmission between vehicles
and RSUs. Conversely, our solution introduces a closed-loop
framework, involving the vehicle, EdgeServers (i.e., RSU),
and the cloud, which considers bidirectional data transmission
(measurement uplink and model downlink). This framework
also incorporates adaptive Cr to accommodate dynamic vehi-
cle scenarios, reducing bandwidth for data transmission.

From a computing systems perspective, most research often
relies on simulation data due to the lack of dedicated exper-
imental platforms. In contrast, we design and implement an
RSU platform and a robotic vehicle equipped with industry-
grade computing units and sensors, facilitating comprehensive
testing that closely reflects real-world conditions.

Regarding communication efficiency, previous research pri-
marily focuses on enhancing communication mechanisms



Fig. 3. The complete VEC closed-loop framework to integrate TCS, edge computing, and CVs. The vehicle generates (captures) adaptive
measurements based on the RL, which decides adaptive Cr by involving vehicle tracking or measurement similarity analysis, and then a
lightweight model (YOLOv3-Tiny) is employed to perform real-time detection based on raw measurements of vehicles. Compressed with
low bandwidth measurements are also sent to the EdgeServer to save the information. When the trigger is on, the reconstruction operation is
performed by BIRNAT, and a more accurate result of object detection based on the reconstructed video is described by an advanced detection
network (YOLOv3), verifying the YOLOv3-Tiny’s result. Meanwhile, these results will be sent to the cloud with the saved measurements to
refine YOLOv3-Tiny to provide more accurate in-vehicle services. The reconstructed video will also be sent to the cloud to receive related
information from vehicle fleets to conduct decision-making such as traffic control and path planning.

by developing advanced protocols [49], [50], architectures
[51], and innovative communication strategies [52]–[54]. In
contrast, we propose the use of adaptive TCS to improve
transmission efficiency between vehicles and RSUs. To the
best of our knowledge, only one related work [55] demon-
strates the improvement of object detection on compressed
measurements. Our work takes this technology one step further
toward real applications of adaptive TCS for CVs, which
is able to dynamically reduce bandwidth consumption and
accelerate machine vision services.

Moreover, compared to traditional video compression stan-
dards like H.264 [56], [57] and H.265 [58], TCS is better
suited for compressing data from vehicle-mounted cameras.
TCS compresses data at the acquisition stage, reducing trans-
mission bandwidth and computational delays on the vehicle
side [59], [60]. It also avoids reliance on motion estimation,
ensuring stable compression in dynamic scenes. TCS’s simple
approach lowers energy consumption [61], [62], making it
ideal for low-latency, real-time applications, especially in
large-scale CV deployments and complex environments.

III. FRAMEWORK DESIGN AND IMPLEMENTATION

A. VEC Closed-loop Framework Description

As mentioned in Section I and Section II-E, the VEC
closed-loop framework includes three key components. Fig. 3
provides a detailed overview of the framework process.
i) Vehicle: With the help of RL, the vehicle generates
dynamic bandwidth-efficient measurements based on the
adaptive compression ratio Cr. Then, an energy-efficient
network, i.e., YOLOv3-Tiny [63] performs object detection
(vehicle detection as an example) directly on the measure-
ments, with the effectiveness of boosting inference speed.

ii) EdgeServer: The EdgeServer stores and reconstructs data
from vehicles upon specific triggers, leveraging a more
powerful YOLOv3 network for more accurate applications,
and providing feedback or notifications to vehicles to ensure
a closed-loop framework.
iii) Cloud: The cloud aggregates all useful information from
the EdgeServer, such as reconstructed video detection results
and saved measurements, to refine the YOLOv3-Tiny model
on the vehicle for model updating purposes. Additionally,
it hosts all reconstructed videos sent from vehicle fleets
covering diverse driving environments (e.g., rainy, snowy,
and sunny) to train related models, enabling vehicles to
adapt to different weather conditions.

B. Dataset Selection

To evaluate the adaptability of our framework, we utilize
extensive datasets: i) Under standard driving scenarios:
The TuSimple dataset encompasses both static and dynamic
objects, comprising 7,000 video clips, each with a duration of
one second. The training set includes 3,626 videos alongside
3,626 annotated frames, as referenced in [64]. ii) Under
rainy driving scenarios: The Berkeley Deep-Drive dataset
(BDD100K) [65] is one of the largest real-world driving
video datasets. It comprises 100,000 high-definition videos,
representing over 1,100 hours of driving experience across var-
ious weather conditions, including rain, sunshine, and cloudy
environments. iii) Under snowy driving scenarios: The
Canadian Adverse Driving Conditions (CADC) dataset [66],
collected during winter in the region of Waterloo, Canada, is
designed to facilitate research on adverse weather conditions.

C. Phycial Testbeds



In a real-world deployment, the RSU is an example of a typ-
ical EdgeServer in our proposed VEC closed-loop framework.
However, owing to the absence of experimental platforms
(e.g., vehicles and RSUs), the majority of research is based
either on simulated data [17], [67], [68], or conducted on
commercial equipment with very limited access to real-world
vehicle conditions [10], [69].

To close this gap, we design and build i) Equinox, an ex-
perimental RSU platform (Fig. 4(a)) and ii) Zebra, a robotic
vehicle (Fig. 4(b)). The robotic vehicle features an Acker-
mann steering chassis, an industry-grade computing board,
and a suite of sensors, closely simulating a real-world vehicle
testbed. Consequently, the experimental outcomes from these
testbeds provide practical insights that are transferable to real
vehicle applications in actual driving scenarios. To be specific,
Equinox features advanced communication, data, and com-
putation layers, while Zebra is equipped with cutting-edge
sensors and computing units. In addition, a powerful NVIDIA
GPU Workstation (4× GeForce RTX 2080 Ti graphics cards)
is working as the cloud.

Fig. 4. The hardware overview of Equinox and Zebra.

1) Equinox: A Roadside Experimental Platform: Our Edge-
Server, Equinox, is composed of three main layers: i)
communication layer, ii) data layer, and iii) computation
layer. The communication layer enables communication in
three ways: WiFi, DSRC, and LTE. As to the data layer,
a network-attached storage (NAS) and several Solid State
Drives (SSD) are adopted. In addition, Equinox is designed
with a heterogeneous computation layer, including four Intel
Fog Reference Design-based CPU-FPGA, four Edge Tensor
Process Units (TPUs), and an NVIDIA GPU. In particular,
each Intel Fog Reference has a Xeon E3 CPU and Cyclone
V FPGA board with 32GB memory. Each edge TPU board
has an Integrated GC7000 GPU, 1GB RAM, and 8GB of
flash memory. The NVIDIA DRIVE AGX Xavier GPU is
the newest version of computing unit for autonomous driving
vehicles and we use it to accelerate both model training and
inference.

2) Zebra: A Robotic Vehicle Research Platform: Our de-
signed robotic vehicle platform, Zebra, serves as the con-
nected vehicle in the proposed VEC framework. It consists
of three key components: sensors, computation units, and
unmanned ground chassis (UGV). Zebra is equipped with

two Intel Realsense L515 Lidar cameras1 and one 2D Lidar
(SLAMTEC RPLidar A32) providing both color and depth
information. The selected UGV is a Hunter 2.0 Mobile Robot
of AgileX Robotics3, which is designed as a programmable
UGV for autonomous driving use cases. For communication,
the HUNTER 2.0 provides Controller Area Network 2.0B
(CAN2.0B) connectors [70] to establish communication with
external devices. In particular, CAN2.0B is an extended ver-
sion of the CAN protocol, supporting a communication baud
rate of 500kbps using the Motorola message format. Regarding
the computing unit, Zebra adopts the Nvidia Jetson AGX
Xavier developer kit4 for real-time, compute-intensive tasks,
consuming around 10W of power. The LB-LINK Wi-Fi router
supports 802.11a/b/g/n standards, enabling vehicles to connect
with the RSU for measurement transmission.

D. Algorithm Description in VEC Framework

Next, we introduce and compare two RL policies within the
VEC framework for adaptive compressive sensing. Further-
more, we evaluate the reconstruction quality of two models,
E2E-CNN and BIRNAT, across various Cr values.

1) Adaptive Compressive Sensing: As described earlier
(Sec.II-B), the key challenge for real-world CV applications is
how to automatically and optimally adapt Cr under different
driving scenarios. For example, in a slow-motion scenario
(e.g., vehicles stopped at a red traffic light), a higher Cr is
beneficial to reduce transmission bandwidth and accelerate
inference speed while maintaining high detection accuracy.
Conversely, in fast-motion scenarios (e.g., when vehicles ac-
celerate), a lower Cr is required to prevent information loss.

In this work, we introduce RL [71] to the vehicle and
combine RL with other machine learning methods (e.g., MOT
models) to achieve adaptive temporal TCS. Briefly speaking,
RL is a cyclical learning process in which an agent interacts
with the unknown environment and takes action to change its
state to maximize the expected cumulative reward. The goal of
RL is to optimize behavioral strategies in sequential decision
problems [72]. The RL agent will never be told the optimal
action, instead, it will receive an evaluation signal (reward
or penalty) indicating the goodness of the current action.
Hence, RL matches well with an adaptive TCS considered
in this work, where the vehicle usually does not know the
environment and the objects in the scene being captured are
dynamic and their speed can vary over time [73].

Within the VEC framework, the vehicle acts as the RL
agent, taking responsibility for generating a specific reward
(r) at each time step (t), i.e., rt ∈ R. To enable CVs to
automatically determine the optimal Cr, we assign a reward at
each time step corresponding to the vehicle’s forward action a
= {decrease, keep, increase}, as predicted by the RL model.
This includes adjusting Cr by either decreasing it, maintaining

1https://www.intelrealsense.com/lidar-camera-l515/
2https://www.slamtec.com/en/Lidar/A3
3https://global.agilex.ai/products/hunter-2-0
4https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit



its current value, or increasing it. For example, Cr can shift
directly from 8 to 20 to better meet the dynamic demands
of real-world applications. It is important to emphasize that
this policy allows skipping intermediate Cr values. In this
work, we posit that six reconstruction models are needed, each
corresponding to different Cr values, i.e., Cr = {6, 8, 10, 12,
15, 20}, and have been trained for real-world applications. The
selection of these Cr values is guided by heuristic methods,
underpinned by extensive experimental analysis across various
videos [55], to ensure satisfactory reconstruction quality. These
values form a state set S = {6, 8, 10, 12, 15, 20}. S′

represents the updated state after conducting each a. For each
action step, the RL module issues a reward r (S, a, S′),
correlating directly to the environmental context.

Table I. State transition table of the proposed RL for adaptive video
TCS by only considering three states, i.e., S = {8, 12, 20}. Here,

increase2 denotes the jump from 8 to 20, and similarly,
decrease2 denotes the decrease from 20 to 8.

S action S′ p r

8 decrease 8 0 −
8 keep 8 1 rkeep
8 increase 12 a rincrease

8 increase2 20 1− a rincrease

12 decrease 8 1 rdecrease
12 keep 12 1 rkeep
12 increase 20 1 rincrease

20 decrease2 8 b rdecrease
20 decrease 12 1− b rdecrease
20 keep 20 1 rkeep
20 increase 20 0 −

To be concrete, Table I presents the state transition through
a simplified example, wherein Cr is limited to three distinct
values: 8, 12, and 20, i.e., S = {8, 12, 20}. In this scenario,
initiating a search period with S = 8 does not permit a
transition to a new state S′ with the action a = decrease
since 8 represents the minimum value in the set; consequently,
the related conditional probability p = 0, and no associated
reward r is applicable. Conversely, with the action of increase,
i.e., S = 8 and a = increase, S could be increased to 12 or 20
(i.e., S′ = 12 or 20) with probability α and 1−α, respectively,
where α ∈ [0, 1]. Similarly, initiating a search with S = 20
and a = decrease can result in a transition to S′ = 8 with
probability β and to S′ = 12 with probability 1 − β, where
β ∈ [0, 1].

2) Two Designed RL policies: In practical CV environ-
ments, the effectiveness of an RL policy is closely related to
deep learning models and the characteristics of the driving
scenarios. Initially, we consider the detection mAP (mean
Average Precision) and the peak-signal-to-noise ratio (PSNR)
of the reconstructed video as the key performance metrics for
the RL module to adjust Cr. Here, PSNR is used to evaluate
reconstruction model performance. However, considering real-
world applications of our designed VEC framework (Fig. 3),
we do not always have the detection rate due to the absence
of ground truth in new driving scenarios. Also, PSNR is not
consistently applicable, as video reconstruction is not always
necessary, i.e., only when the number of detected vehicles

exceeds a threshold (three), video reconstruction will be ini-
tiated, and the corresponding PSNR value will be obtained.
Therefore, we propose two RL policies and evaluate them
under highway and urban scenarios to facilitate adaptive TCS.

Specifically, we choose two objective metrics for adaptive
Cr: i) the dynamic bounding box (bbox) size of the front
vehicle tracked on captured measurements, and ii) the sim-
ilarity of adjacent measurements. Given an initial Cr, RL
will predict action a based on the analysis results (similarity
or front bbox size) of captured measurements and keep the
objective metric value within a suitable range. For instance,
when the calculated similarity of adjacent measurements is
smaller than the threshold, it indicates that the current Cr is
larger than the optimal value, thus RL is expected to output a
smaller Cr for the subsequent cycle.

To find the optimal range of Cr, we analyze the distribution
of the objective metric values. This analysis enables us to
identify the appropriate maximum and minimum thresholds
for Cr: upper/lower bound = min + (max − min) × λ
(λ1 ∈ (0, 1)), where the min and max refer to the minimum
and maximum value, and λ is a coefficient to distinguish the
upper and lower bound threshold. As to the front vehicle’s
bbox size, we set λ = 0.7 and λ = 0.4 to get the upper bound
(23,400 pixels) and lower bound threshold (16,398 pixels),
respectively. Without loss of generality, we set λ = 0.94 and
λ = 0.9 for the similarity metric to get the upper bound
(0.9417) and lower bound threshold (0.9333).

(1) RL-I: Tracking-Driven Adaptive TCS. This policy lever-
ages MOT algorithms for adaptive TCS in vehicle applications.
Specifically, we use MOT models to track the front vehicle
and obtain its bbox size in pixels, with RL-I aiming to
maximize cumulative reward based on real-time bbox size.
Then, we train, deploy, and compare two SOTA tracking
models on our proposed platform: (1) Deep SORT [40], which
employs a tracking-after-detection approach, and (2) Center-
Track [41], which integrates detection and tracking within a
unified framework. These models are extended to incorporate
TCS by dynamically adjusting Cr based on the tracked front
vehicle’s bbox size. Both models utilize different distance
metrics for object association: cosine distance compares object
appearance across frames [74], while Mahalanobis distance
considers object location and scale, enhancing robustness in
complex driving scenarios [75]. These metrics play a key
role in the effectiveness of tracking algorithms in dynamic
environments [40], [41].

Deep SORT: Deep SORT [40] operates in two phases:
(i) the detecting phase, and (ii) the tracking phase. In the
detection phase, targets are identified, and bounding boxes are
computed. For each bounding box, Deep SORT generates a
128-dimensional appearance descriptor and motion descriptor.
Then, it combines the cosine distances of the appearance
descriptors with the Mahalanobis distances of the motion
descriptors to determine the admissibility of frame-by-frame
associations, enabling effective tracking of multiple targets.

CenterTrack: Different from the “tracking after detection”



paradigm (e.g., Deep SORT), CenterTrack [41] is a typical
example of “joint detection and tracking” and “tracking objects
as points”. Firstly, CenterTrack simplifies tracking-conditioned
detection. It jointly infers all objects when associating them
across frames. Secondly, CenterTrack tracks objects based on
points which can simplify target association over time, as it
can jointly detect points for the current frame and associate
the current target with prior detection results.

In this context, the RL-1 strategy optimizes cumulative
rewards by leveraging real-time data on the bbox size of the
front-most vehicle. The rationale for relying on the bbox size
to guide RL decisions (e.g., adjusting Cr) is two-fold:
• The change in the front vehicle’s bbox size can serve as
an indicator of both the host vehicle’s speed and that of the
front vehicle. For instance, if the bbox of the front vehicle
enlarges, it could suggest that the host vehicle has entered
a slow-motion scenario. Under such circumstances, Cr can
be increased to facilitate faster processing speeds while still
retaining essential information.

• The change in the front vehicle’s bbox size also provides
insights into the distance between it and the host vehicle. A
smaller bbox may imply a greater distance, with each object
occupying fewer pixels in the image. Hence, the Cr should
be reduced in such scenarios; otherwise, a larger Cr could
exacerbate the challenge of extracting information from the
corresponding measurement.

We specifically focus on the bbox size of the front vehicles,
designated with a vehicle ID of 1, while excluding other
detected vehicles from consideration. The front vehicle’s ID,
as determined by the MOT algorithm, is less prone to reas-
signment or disappearance during the tracking phase, thereby
ensuring greater reliability in the tracking outcomes.

(2) RL-II: Similarity-Driven Adaptive TCS. The second
proposed RL policy focuses on analyzing the similarity be-
tween consecutive measurements. By employing MobileNets
[76] for feature extraction from the measurements, we compute
the cosine distance between the features of adjacent measure-
ments, yielding similarity scores within the range of [-1, 1]. A
score of 1 indicates maximum similarity, whereas -1 signifies
the utmost dissimilarity. The reasons for utilizing measurement
similarity to guide RL decisions include:
• A substantial change in similarity can indicate alterations
in velocity or transitions between different driving scenes.
For example, a decrease in similarity, which indicates a
larger gap between consecutive measurements, may imply
rapid scene changes (e.g., a vehicle navigating into a new
block), necessitating a reduction in Cr to accommodate the
increased information variability.

• Variations in similarity also reflect the speed of the host
vehicle. As the vehicle accelerates, the similarity between
successive measurements decreases, indicating a fast-motion
scenario. This suggests that reducing Cr is essential to
accurately capture transient high-speed data without com-
promising information integrity.

E. Video Reconstruction

We introduce E2E-CNN and BIRNAT for video reconstruc-
tion, both trained on measurements with different Cr values.
We then compare the reconstruction quality of adaptive Cr
against non-adaptive compression with fixed Cr, as discussed
in Sec. IV-B, Sec. IV-B5, and Sec. IV-C.

E2E-CNN [28] is proposed to enable a millisecond-level
reconstruction for TCS problems. Specifically, E2E-CNN in-
cludes a convolutional encoder and decoder with residual
block connection (res-block) [14], where both the encoder
and decoder consist of five residual blocks, and they are
connected by two convolutional layers. Different from the
conventional iteration-based methods [77], which require it-
eration and computation for each measurement, E2E-CNN
conducts optimization only during training and efficiently
recovers images during inference.

BIRNAT [29] is proposed to reconstruct the first frame
as a reference for the reconstruction of the following frames
through a measurement pre-processing method. The first (ref-
erence) frame is reconstructed by an attentional res-block
based convolutional neural network (CNN), and the following
frames are sequentially inferred by a bidirectional recurrent
neural network (RNN) based on the first frame. The experi-
ment results on both simulation and real datasets demonstrate
that BIRNAT outperforms current SOTA algorithms, including
GAP-TV [78], DeSCI [77], and U-net [28].

IV. EVALUATION RESULT AND DISCUSSION

In this section, we meticulously present and analyze the
comprehensive evaluation results of the proposed VEC frame-
work, providing valuable insights into its performance and
effectiveness. Specifically, we assess the proposed framework
in the following ways: i) measurement-based object detection
accuracy and reconstruction quality of various algorithms un-
der diverse Cr, ii) performance of two reinforcement learning
policies for adaptive TCS, and iii) computational latency,
bandwidth reduction, and resource utilization, including CPU,
GPU, and memory footprint.

A. Measurement-based Vehicle Detection under Adverse En-
vironments

As discussed in Section III-A, it is challenging to guarantee
the performance of models in inclement weather such as
rain and snow, where data variation is unpredictable and
difficult to capture or utilize [79]. Additionally, inference
accuracy can significantly decrease from approximately 96%
to 36% when the execution environment shifts from normal to
adverse scenarios [80], [81]. This decline occurs because many
models are trained on standard and clean datasets like COCO
[82], causing them to fail in accurately recognizing objects
in adverse conditions. Motivated by this insight, we pre-
trained an advanced object detection model on the cloud using
data specifically collected under normal, rainy, and snowy
conditions for vehicle model updating purposes. The cloud
also hosts an increasing amount of global data with diverse



geographic, environmental, and weather conditions, which is
beneficial for continuously training more advanced models.

To prove the effectiveness of measurement-based detection
under adverse environments, we trained the YOLOv3-Tiny
model [83] on three groups of measurements under normal,
rainy, and snowy conditions. Fig. 5 presents an example of
detection results. In rainy and snowy days, the sliding of the
vehicle windshield wipers causes obvious noise on the mea-
surement (as shown in Fig. 5(b) and Fig. 5(c)), but this does
not affect the object detection on the measurement. We employ
a YOLOv3 network on the original public video dataset to get
labels (bounding boxes of vehicles) and treat these labels as
the ground truth (pseudo-label). We use mAP (mean Average
Precision) as our detection rate score [84]. Specifically, as
we focus on a single category, mAP corresponds to Average
Precision (AP), which represents the area under the precision-
recall curve, providing a summary of the model’s performance
across varying thresholds. We also consider the intersection-
over-union (IoU) [85] between ground truth and predictions
as an additional evaluation metric.

Precision =
TP

TP+FP
=

TP

all detections
(1)

Recall =
TP

TP+FN
=

TP

all ground truths
(2)

IoU =
area (bboxp ∩ bboxgt)

area (bboxp ∪ bboxgt)
(3)

where TP is the number of detection frames with IoU
(intersection-over-union) > 0.5 and FP with IoU ⩽ 0.5 detec-
tion frames. FN refers to the number of missing detections.
bboxgt represents the bbox of ground truth (GT) and bboxp of
the predicted frame.

(a) Normal day (b) Rainy day (c) Snowy day

Caused by 

moving 

wipers

Caused by 

moving 

wipers

Fig. 5. An example of vehicle detection on three groups of measurements
under different weather conditions.

Figure 5 presents an example of detection results. In rainy
and snowy days, the sliding of the vehicle windshield wipers
causes obvious noise on the measurement (as shown in
Fig. 5(b) and Fig. 5(c)), but this does not affect the object
detection on the measurement.

B. Results of RL-I: Tracking-Driven Adaptive TCS

In this work, we evaluate the reconstruction quality of
various algorithms under diverse Cr values, including two RL
policies, separately.

1) Evaluation Metric: To explore the suitable tracking
algorithm, we train and test Deep SORT and CenterTrack on
measurements. Then, we use the MOTA to describe model
performance on multi-object tracking tasks, defined as follows:

MOTA = 1− Σt(FPt + FNt + IDSWt)

ΣtCTt
(4)

Where FPt, FNt, IDSWt, and CTt represent false posi-
tives, false negatives, identity switches, and the ground truth
in measurement frame t.

Additionally, to assess the quality of the reconstructed
images, we employ the Peak Signal-to-Noise Ratio (PSNR) as
the evaluation metric. PSNR [86] measures the ratio between
the peak signal and the noise level in the reconstruction
relative to the original image. By comparing PSNR values, we
can clearly understand the performance of the reconstruction
images. More specifically, given an original image I of size
m×n and an image K after reconstructing, the mean squared
error (MSE) is defined as follows, and the average PSNR of
the video group is given by:

PSNR = 10 · log10

(
MAX2

I

MSE

)
(5)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i− j)−K(i− j)]2 (6)

Where MAX2
I denotes the maximum possible pixel value

in the image I , i and j are indices that are used to iterate
over the pixels. This formulation allows for the adaptation of
the PSNR calculation to various image formats by accurately
defining the maximum pixel intensity based on the bit depth.

2) Deep SORT vs. CenterTrack: In our test, CenterTracker
showed better tracking accuracy: with a multi-object track-
ing accuracy (MOTA) value of 74.42, higher than DeepSort
(60.85). Besides, the average inference time of CenterTrack
is only around one-third of Deep SORT’s average inference
time (i.e., 26ms vs. 86ms). Therefore, we adopt CenterTrack
to support the adaptive TCS based on vehicle tracking.

3) The Effectiveness of RL-I: Fig. 6 presents the adaptive
TCS results based on the bbox size of the front vehicle that is
tracked from the measurements under highway scenarios, to
detect surrounding vehicles from the adaptive measurements.

Specifically, Fig. 6(a) presents the changes in the front
vehicle’s bbox size (in pixels) and adaptive Cr (frames) from
the measurements against a constant stream of measurements.
As shown in Fig. 6(a), Cr has approximately maintained a
certain range at the beginning. Then the host vehicle observes
a bridge ahead and slows down its speed. This change leads
to a larger front vehicle’s bbox, consequently, Cr rises to a
higher level (Cr = 8) and finally rises to the defined highest
value (Cr = 20). In the end, Cr drops back to the original
lower level (Cr = 6) when the vehicle speed becomes normal
to pass through the bridge.

Three normalized measurements with different values of
adaptive Cr are shown in Fig. 6 (b-d) with adaptive Cr = 6,
20, 6. We can see that the normalized measurement (c) has the
largest adaptive Cr = 20 since its corresponding original video
frames are moving slowly, while the normalized measurement
(d) is blurry with the smallest adaptive Cr = 6 due to the
fast vehicle speed in associated video frames. Accordingly, the
RL-I enables dynamic adjustment of Cr based on the front
vehicle’s bbox size, ensuring optimal adaptation to varying
vehicle speeds.

4) Adaptive TCS vs. Non-adaptive TCS: In Fig. 6, the video
has a total number of 1494 frames, achieving an average
compression ratio (average Cr) of 10.89. To demonstrate the



Fig. 6. Adaptive Cr based on the bbox size of front vehicle that is tracked from the measurements directly. (a) Reconstruction PSNR (dB)
and adaptive Cr (frames) (average adaptive Cr = 10.89) from the measurements, all are plotted against the index number of measurements.
(b-d) Normalized measurements when the vehicle passes through the bridge, adapted Cr = 6, 20, 6, respectively. (e) Reconstructed frames
1447∼1452 from the measurement in (d) with adaptive Cr. (f) Reconstructed frames 1147∼1452 with non-adaptive (constant) Cr = 10.
(g) Vehicle detection results on the raw images and measurements with different Cr = {6, 8, 10, 12, 15, 20} in the same video clip.

advantages of adapting Cr, we compare adaptive reconstruc-
tions (Fig. 6(e)) to those obtained when Cr is fixed at or
near its expected value (Fig. 6(f)) at Cr = 10. Fig. 6(f)
shows the reconstructed frames 1147∼1452 from the mea-
surement in (d) with non-adaptive (constant) Cr. Comparing
Fig. 6(e) and 6(f), we notice that adapting Cr provides
a higher (1.93dB) reconstruction quality (average all 1494
frames PSNR=29.47dB) than fixing Cr even lower than its
expected value (average PSNR = 27.54dB). Besides, it also
improves the average detection mAP from 72.64 to 81.53. To
present the effects of diverse Cr on object detection based on
measurements, we visualize the vehicle detection results on the
raw (original) images and measurements with different Cr =
{6, 8, 10, 12, 15, 20} in the same video clip in Fig. 6(g). It can
be seen that a decent detection mAP is obtained at Cr = 6 or
8, while a larger Cr will lead to false alarms. Consequently,
compared to the reconstructed video, both mAP and PSNR
are higher (mAP by 8.89, PSNR at 29.5).

5) Video Reconstruction: To figure out a suitable recon-
struction method, we train and compare two SOTA algorithms,
i.e., E2E-CNN and BIRNAT with different Cr.

Table II. Reconstruction Quality (PSNR in dB) Comparison.
Algorithm Cr = 6 Cr = 8 Cr = 10 Cr = 12 Cr = 15 Cr = 20
E2E-CNN 27.76 26.40 25.77 24.74 24.52 23.33
BIRNAT 34.71 32.60 29.97 29.41 29.32 28.48

Table II presents the reconstruction results (i.e., the change
in the value of PSNR) with different Cr. A higher PSNR
value indicates a better reconstruction quality. It can be seen
that BIRNAT achieves higher PSNR values than E2E-CNN
across all Cr. Therefore, we deploy BIRNAT at EdgeServer
for video image reconstruction (Fig. 3).

C. Results of RL-II: Similarity-Driven Adaptive TCS

Similar to Fig. 6, Fig. 7 shows how the adaptive Cr changes
based on the similarity of measurements in urban areas. Here,

the similarity of adjacent measurements has more obvious
fluctuations since the background information is richer than
the highway.

1) The Effectiveness of RL-II: As shown in Fig. 7(a), in the
middle part, the similarity has a relatively sharp drop, and this
is because the host vehicle turns left into another road, i.e.,
there is a dramatic transition from one driving scene to another.
In this context, Cr should be reduced in theory. However,
since the associated Cr achieves the defined lowest value (Cr
= 6), RL decides to keep the lowest Cr until the host vehicle
completely drives into the new district.

2) Adaptive TCS vs. Non-adaptive TCS: From the recon-
structed frames in Fig. 7(e)-(f) and detection frames in (g),
we can see that adapting Cr leads to a 2.31dB improvement
in PSNR and an increase of 5.69 in vehicle detection mAP,
illustrating the effectiveness of adaptive TCS. Overall, the RL-
II dynamic adjustment of Cr achieves higher mAP (68.83 vs.
74.97) and PSNR (25.97 vs. 28.28).

D. Inference Latency of Involved Models

The VEC framework involves four types of models: i)
object detection (including YOLOv3-Tiny and YOLOv3), ii)
reconstruction (E2E-CNN and BIRNAT), iii) MOT (Center-
Track and Deep SORT), and iv) Similarity analysis, i.e.,
MobileNets. A prior study reports that the execution time for
each real-time task pipeline should remain below 100ms for an
autonomous vehicle traveling at 40km/h in urban environments
[1]. As presented in Table III, we calculate the average
latency of our task pipeline to demonstrate its efficiency and
practicality in real-world CV applications. The methodology
for calculating total latency is detailed in Sec. IV-G2.

Table III. Average inference time of deep learning models.

Model YOLOv3-Tiny YOLOv3 E2E-CNN BIRNAT CenterTrack Deep SORT MobileNets
Time(ms) 16 42 29 96 26 86 39
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Fig. 7. Adaptive Cr based on similarity of adjacent measurements. (a) Reconstruction PSNR (dB) and adaptive Cr (frames) (average adaptive
Cr = 8.71) from the measurements, all are plotted against measurement numbers. (b-d) Normalized measurements when the vehicle drives in
the urban district, adapted Cr = 8, 20, 6, respectively. (e) Reconstructed frames 1189∼1194 from the measurement in (d) with adaptive Cr.
(f) Reconstructed frames 1189∼1194 with non-adaptive (constant) Cr = 8. (g) Vehicle detection results on the raw images and measurements
with different Cr = {6, 8, 10, 12, 15, 20} in the same video clip.

E. Transmission Bandwidth

1) Correctness Checking for Video Transmission: The
Transmission Control Protocol (TCP) and the User Datagram
Protocol (UDP) are the dominant communication protocols
[87]. In this work, we use UDP for measurement transmission.
Since there is no sequencing of data in UDP, in the process
of data transmission and receiving, data disorder will occur.
To overcome this issue, we conduct correctness checking by
adding source and destination IP addresses to the header along
with parity checking.

2) Theoretical Value: In this work, only (compressed) mea-
surements will be transmitted. Theoretically, with a defined
Cr, the transmission bandwidth (considering a single channel)
can be decreased to 1

3×Cr
of what would be required for

transmitting raw RGB images (which involve three channels).
This efficiency enables the feasibility of our framework on
any communication platform that offers bandwidth exceeding
320KB/s, as detailed in Table IV.

Table IV. Real-time transmission bandwidth requirements

Image Type RGB Grey-scale Measurement
(Cr = 6)

Measurement
(Cr = 15)

Measurement
(Cr = 20)

EdgeServer
Recv 30fps 30fps 5fps 2fps 1.5fps

Available
Time 33.33ms 33.33ms 200ms 500ms 666.67ms

Bytes
Per Frame 196641 65569 65569 65569 65569

Required
Bandwidth 5760.97KB/s 1920.97KB/s 320.16KB/s 128.06KB/s 96.05KB/s

We first focus on the ideal case (i.e., only consider real-
time image transmission). Suppose the original video stream
on the vehicle is 30fps, then to achieve real-time transmission,
EdgeServer should process no less than 30 measurements per
second. Table IV presents the theoretical values of five metrics
to achieve real-time, including
• EdgeServer Recv: the minimum number of frames
received by EdgeServer per second,

• Available Time: the maximum delay allowed for each
frame to be analyzed and transmitted,

• Bytes Per Frame: the number of bytes contained in
each frame (an image is converted into a byte stream),

• Required Bandwidth: the minimum bandwidth re-
quired.
As shown in Table IV, we summarize the transmission

requirements for each image category: i) raw RGB images,
ii) grey-scale images, iii) measurements with Cr = 6, iv)
measurements with Cr = 15, and v) measurements with Cr =
20, to achieve real-time transmission. Recall that we assume
the original video stream on the vehicle is 30fps, and thus
in this context, EdgeServer Recv of RGB and grey-scale
images should achieve at least 30fps for real-time applications.
However, as the “measurement with Cr = 6” group and the
“measurement with Cr = 15” group, they only receive 5 and 2
frames per second, respectively. In this context, EdgeServer
Recv of RGB and grey-scale images are both equal to around
33.33ms ( 1s

30fps ); however, as to the two measurement groups
(i.e., Cr = 6 and Cr = 8), the minimum number of frames
received per second can increase to 200ms ( 1s

5fps ) and 500ms
( 1s
2fps ). This means that conducting analysis on measurements

rather than RGB images could significantly increase (greater
than 6×) the maximum delay allowed to achieve real-time
transmission. In addition, without TCS, the average inference
time of many models, such as YOLOv3, MobileNets, and
Deep SORT (Table III), will exceed 33.33ms.

As to the Bytes Per Frame, the number
of bytes in RGB frame is around 3× that grey-
scale images and measurements (all images and
measurements are in the size of 256 × 256 pixels).
Based on the definition, Required Bandwidth =
Bytes Per Frame×EdgeServer Recv

1s , we can calculate the
value of Required Bandwidth (shown in Table IV)
for real-time applications. Recall that our measured



Fig. 8. An example of communication bandwidth evaluation results
between vehicle and EdgeServer.

Fig. 9. An example of communication bandwidth evaluation results
between vehicle and EdgeServer.

bandwidth is around 4000KB/s, which is much smaller
than RGB’s Required Bandwidth (5760.97KB/s). This
highlights a critical finding: real-time applications would
be infeasible without the use of TCS. Most importantly,
the Required Bandwidth of RGB images is around
18× that of measurements with Cr = 6, and this difference
grows exponentially when continuously increasing Cr.
This observation indicates the feasibility and promise of
realizing real-time CV applications. Further observations and
discussions are provided in Sec. V.

3) Experiment Value: To quantify the real performance
of bandwidth reduction, we monitor and record the trans-
mission bandwidth from the perspective of the vehicle and
the EdgeServer respectively, specifically the sending process
from the vehicle and the receiving process on the EdgeServer.
Figure 8 presents the bandwidth utilization (KB/ms) of these
two processes for three groups, i.e., RGB image transmission
(Fig. 8(a)), grey-scale image transmission (Fig. 8(b)), and
measurement transmission (Fig. 8(b)) with adaptive Cr. It is
clear RGB image transmission leads to the highest bandwidth
pressure on the network than gray-scale image transmission,
and the measurement transmission has the lowest bandwidth

requirements with the lowest frequency of bandwidth peak.
Besides, given a specific group, the value of bandwidth peaks
in the sending process is significantly less than that of the
receiving process; however, the frequency of bandwidth peaks
in sending is greater than that of the receiving process.

F. CPU and Memory Utilization
We then evaluate the CPU and memory utilization on both

the vehicle and the EdgeServer. As shown in Fig. 9, the black
color represents the idle phase, and the red color highlights
the execution phase. It can be observed that the EdgeServer
has a higher CPU utilization rate and memory footprint. This
observation also indicates that our proposed VEC framework
can transfer a significant portion of the CPU and memory
utilization pressure from the vehicle to the EdgeServer.

G. Additional Considerations
1) Robustness to Noise: We also assess the proposed RL

module’s robustness to noise by evaluating its ability to
recover from noisy measurements. As indicated in Table V,
even after adding zero-mean Gaussian noise n ∼ N (0, σ)
to measurements normalized within the range of [0, 1], the
reconstruction quality (reflected by PSNR in dB) and detection
mAP remain high.

2) Inference Speed: A prior study indicated that for an
autonomous vehicle traveling at 40km/h in urban areas, the
execution time for each real-time task pipeline should not
exceed 100ms [1]. In this work, two key applications are
implemented on the vehicle: object detection and RL policies,
which encompass MOT and similarity analysis. Only one RL
policy is executed on the vehicle, resulting in a total pipeline
latency of 42ms, comprising 16ms for YOLOv3-Tiny and
26ms for CenterTrack. Reconstruction is performed on the
RSU rather than on the vehicle, as the detection accuracy
on compressed measurements is comparable to that on recon-
structed videos, with evaluation metrics closely aligning with
true values [55]. Thus, the total inference time on the vehicle
remains well below the 100ms threshold, demonstrating the
practicality and efficiency of employing our framework for
real-world CV applications.

Table V. Reconstruction PSNR and detection mAP vs. noise σ.

σ

PSNR, DR B
6 10 15

0 28.73, 85.43 28.44, 85.57 28.33, 81.38
0.005 28.56, 85.21 28.30, 84.36 28.19, 80.18
0.010 28.18, 83.74 27.99, 81.62 27.89, 77.45
0.050 24.70, 75.34 24.62, 76.33 24.52, 71.26
0.100 21.58, 71.47 21.52, 71.23 21.44, 68.49

3) Practicality to Real Systems: Moreover, recent ad-
vances in reconstruction networks have demonstrated excellent
performance through offline training on simulated data [88].
We believe that training the RL model on simulated data and
applying it to real data will yield similar results. The robotic
vehicle is equipped with industry-grade computing boards and
sensors, closely replicating a real-world vehicle testbed. As a
result, the experimental outcomes from these testbeds offer
practical insights that are directly transferable to real vehicle
applications in actual driving scenarios.



V. OBSERVATION AND DISCUSSION

In this section, we present our main experiment findings and
discuss the key observations.

⋆ Observation 1: With the integration of TCS, our proposed
framework not only maintains high application accuracy on
compressed measurements but also reduces vehicle transmis-
sion bandwidth from 5761KB/s to 320KB/s, achieving an over
18× reduction compared to existing systems.

The effectiveness of the TCS-driven video process is evi-
denced by findings in Sec. IV-A, Sec. IV-D, and Sec. IV-E.

Discussion: Nowadays each vehicle typically generates ap-
proximately 8GB of data per day whether the vehicle is
stationary or in motion. Although 5G technology improves
spectrum and energy efficiency, the EdgeServer still encoun-
ters challenges related to traffic volume and network quality of
service. One effective way to mitigate bandwidth overhead is
by reducing the amount of data transmitted from each vehicle.
In this work, if 200 raw data frames per second need to
be transmitted, adjusting the Cr based on different driving
scenarios to implement TCS is able to reduce this burden. For
example, when Cr = 10, we collect only 20 measurements
per second, replacing the 200 raw frames. Consequently, our
framework transmits only the measurements, achieving more
than an 18× reduction in both communication bandwidth and
latency. Furthermore, increasing Cr to a larger value, such as
Cr = 20, would yield even greater reductions in bandwidth
usage and latency compared to Cr = 10.

⋆ Observation 2: Our RL agent effectively demonstrates its
ability to dynamically determine the optimal Cr based on
varying driving scenarios, resulting in improved PSNR and
mAP compared to non-adaptive TCS.

This observation is supported by the comparison results
between Fig. 7(e) and Fig. 7(f) as well as frames with detection
results in Fig. 7(g).

Discussion: The adaptive TCS demonstrates superior per-
formance over the non-adaptive approach, resulting in higher-
quality compressed image data, which is essential for main-
taining accuracy in real-time vehicle applications (e.g., object
detection). Specifically, the adaptive Cr yields higher PSNR
by 2.31dB and mAP by 5.69 for vehicle detection compared
to the non-adaptive Cr. Moreover, adaptive Cr minimizes
the risk of information loss in fast-motion scenarios while
reducing unnecessary bandwidth consumption in slow-motion
situations, thus achieving both bandwidth efficiency and high
detection accuracy. These illustrate our RL agent’s ability
to adapt Cr based on real-time feedback allowing for more
accurate object detection. Due to the high detection accuracy
of compressed image data, the onboard computation can be
further reduced by offloading the resource-intensive recon-
struction process from the vehicle to the EdgeServer.

⋆ Observation 3: In terms of network strain, measurement
data transmission imposes the least bandwidth, followed by
grayscale image transmission, with raw RGB image transmis-
sion causing the highest strain. Additionally, the sending pro-

cess exhibits a higher frequency of bandwidth peaks compared
to the receiving process.

This observation is supported by Fig. 8(a), Fig. 8(b), and
Fig. 8(c).

Explanation and Discussion: Compared to gray-scale im-
age transmission, measurement transmission typically consists
of compact numerical values or metadata, resulting in minimal
bandwidth usage. In contrast, raw RGB image transmission
imposes the greatest strain on the network due to its three-
channel structure, which transmits large volumes of uncom-
pressed pixel-level data. Also, this high data load significantly
increases bandwidth consumption and leads to the rapid trans-
mission of large data volumes, causing bandwidth peaks.
⋆ Observation 4: The EdgeServer exhibits higher CPU uti-
lization and a larger memory footprint, indicating that our
proposed VEC framework efficiently transfers a considerable
portion of the vehicle’s computational and memory-intensive
tasks to the EdgeServer.

This observation is evidenced by Fig. 9.
Discussion: Our designed VEC framework is designed to

distribute data processing and computational tasks between the
vehicle and the EdgeServer. By offloading resource-intensive
tasks, such as image decoding, data compression, and real-
time analysis, to the EdgeServer, the vehicle’s onboard system
experiences reduced strain on its CPU and memory. This shift
allows the vehicle to focus on critical real-time operations like
navigation or object detection, while the EdgeServer handles
more demanding computational workloads. These highlight
the efficiency of the VEC framework in optimizing the vehi-
cle’s performance by leveraging external computing resources.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a VEC framework and driving-
aware compression mechanisms to manage continuous big data
transmission in CVs. By employing two RL policies and TCS,
we reduce bandwidth requirements by up to 18× at 320KB/s
while retaining critical information for real-time applications
(e.g., object detection). Our lightweight vehicle model’s real-
time detection capability, coupled with EdgeServer recon-
struction when necessary, demonstrates a robust approach to
balancing resource limitations and maintaining high detection
accuracy and reconstruction quality, compared to non-adaptive
measurements. This highlights the framework’s promising
real-world applications for CVs. In the future, we will focus
on enhancing the framework to support seamless scalability
with multiple vehicles, enabling efficient data transmission,
communication, and coordination across large fleets without
compromising performance.
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