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Abstract—With the growing demand for software-defined ve-
hicles (SDVs), deep learning-based perception models have be-
come increasingly important in intelligent transportation systems.
However, these models face significant challenges in enabling real-
time and efficient SDV solutions due to their substantial compu-
tational requirements, which are often unavailable in resource-
constrained vehicles. As a result, these models typically suffer
from low throughput, high latency, and excessive GPU/memory
usage, making them impractical for real-time SDV applications.

To address these challenges, our research focuses on optimizing
model and workflow performance through the integration of
pruning and quantization techniques across various compu-
tational environments, utilizing frameworks such as PyTorch,
ONNX, ONNX Runtime, and TensorRT. We systematically ex-
plore and evaluate three distinct pruning methods in combination
with multi-precision quantization workflows (FP32, FP16, and
INTS8) and present the results based on four evaluation metrics:
inference throughput, latency, GPU/memory usage, and accuracy.
Our designed techniques, including pruning and quantization,
along with optimized workflows, can achieve up to 18x faster
inference speed and 16.5x higher throughput, while reducing
GPU/memory usage by up to 30%, all with minimal impact on
accuracy. Our work suggests using the Torch-ONNX-TensorRT
workflow quantized with FP16 precision and group pruning as
the optimal strategy for maximizing inference performance. It
demonstrates great potential in optimizing real-time, efficient
perception workflows in SDVs, contributing to the enhanced
application of deep learning models in resource-constrained
environments.

Index Terms—Software-defined vehicle, real-time, pruning,
quantization, workflow, FP32, FP16, INTS, throughput, latency,
GPU/memory usage, accuracy.

I. INTRODUCTION

OLE of Vision-Based Systems in SDVs. With the

continuous advancements in computer vision, decision-
making, and control technologies, software-defined vehicles
(SDVs) have become a highly significant topic in intelli-
gent transportation [1]. These SDVs rely on precise, low
latency, high throughput, and GPU/memory efficient applica-
tions/software to manage a wide range of functions throughout
the vehicle’s lifecycle [2], [3]. As a key component of SDVs,
vision-based perception systems play a vital role in gathering
environmental information and providing the necessary per-
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Fig. 1: Overview of the software-defined vehicles (SDVs),
integrating object detection model undergoes techniques like
pruning, quantization, and frameworks like TensorRT ONNX
Runtime, for the optimized model inference performance.

ception for route planning and decision-making [4]. These
systems use cameras to gather real-time information about
the surrounding environment and enhance driving safety by
quickly alerting drivers to unusual conditions through the
detection of objects like vehicles and pedestrians, which is
crucial for SDVs.

Market Growth and Background. The global SDV market
is valued at around $213 billion in 2024 and is projected to
reach $1.2K billion by 2030. Despite its great potential, en-
suring the efficiency and accuracy of vehicle software remains
challenging. A recent report noted nearly 4,000 incidents in
2023, many linked to high latency and slow throughput. Large,
over-parameterized models—ranging from 61 million to over
2 billion parameters,—are a key contributor to these issues,
with models processing up to 40 TB of data in just 8 hours of
driving, leading to excessive GPU memory consumption and
delayed response in SDVs.

Limitations of Perception System Algorithms. Perception
systems are the key component of SDVs. The evolution of
perception systems algorithms has transitioned from earlier
two-stage methods, such as R-CNN [5], [6], SPP-Net [7],
Fast R-CNN [8], and Faster R-CNN [9], to the more popular
one-stage methods, such as Single Shot MultiBox Detector
(SSD) [10] series and the You Only Look Once (YOLO) [11],
[12] series. The entire YOLO series, from YOLOvl [11],
YOLOv2 [13], YOLOV3 [14] to the most popular version
for real-world application YOLOVS [15], are all one-stage
detectors. Two-stage networks are renowned for their fine
accuracy but their slower processing speeds, making them less
suitable for real-time applications in SDVs [16]. In contrast,
one-stage detectors focus on speed, making them more suitable



for real-time SDV applications. However, this speed comes at
the cost of reduced accuracy, especially in complex scenes
involving small or overlapping objects. For example, YOLO,
a type of one-stage network, may struggle to achieve the
precision required for safety-critical systems. Hence, the trade-
off between accuracy and latency is a key challenge in SDV
perception systems.

Challenges in Real-World SDVs. In addition to the trade-off
between accuracy and latency [17], real-world applications of
deep learning-based perception system models also face sig-
nificant challenges in throughput [18] and GPU/memory us-
age [19], which are key factors for the safety and effectiveness
of SDV applications, due to the increasing size and complexity
of the involved models.While larger models often require
substantial processing power and memory, such resources
may not be readily available in the constrained environments
of SDVs. These limited computational capabilities can lead
to bottlenecks in processing. For example, the growing size
of models like YOLOVS increases computational demands
and results in higher GPU memory consumption, presenting
an additional obstacle for resource-constrained SDV systems.
Hence, optimization is necessary not only to maintain the
safety and reliability of the vehicles but also to ensure that
the advanced capabilities of these models can be effectively
utilized in real-world scenarios.

Insights of Optimization Techniques. To overcome the afore-
mentioned challenges in SDVs [20] , a range of optimization
strategies have been developed. One of the most significant
advancements is the use of NVIDIA GPUs, which enable par-
allel processing [21] to accelerate execution, further enhanced
by CUDA optimizations [22]. In addition, there are various
hardware acceleration techniques [23] like ONNX [24], Ten-
sorRT [1], [25], and ONNX Runtime EPI (Execution Provider
Interface) [26], which have been introduced to enhance model
performance. Another key set of techniques includes model
quantization [27], hyper-parameter optimization [28], [29], and
model pruning [30]. Model quantization reduces the preci-
sion of the model’s weights and activations, which decreases
the model’s size and computational requirements without
significantly compromising accuracy. It works by reducing
the precision of weights and activations from floating-point
formats (e.g., FP32) [31] to lower-precision formats such
as FP16 or INT8. On the other hand, model pruning [30],
[32] reduces the model’s size by removing redundant or
less important parameters. By systematically removing these
parameters, the model becomes more efficient, leading to faster
inference times and reduced memory usage without heavily
impacting the model’s performance. Both of these techniques
are essential in optimizing deep learning models for real-time,
resource-constrained applications in SDVs.

Contributions of This Work. In this paper, we designed
approaches that combine both pruning and quantization tech-
niques, specialized to our designed workflows for various
precision modes presented in Fig. 1. These workflows were
developed to address the need for precision calibration across
different computational environments. By integrating pruning,
which systematically reduces model complexity by eliminating
less important parameters, with quantization, which lowers
the precision of model weights and activations, we aimed
to achieve a balanced optimization of model performance.

This approach not only maximizes the inference performance
but also reduces the computational load of the models. The
combination of these (pruning and quantization) techniques
was applied across different precision modes, including FP32,
FP16, and INTS, allowing us to thoroughly explore the impact
of precision calibration on the overall efficiency and effective-
ness of the models in real-world scenarios.

To be concrete, the specific contributions of this work are
illustrated as follows:

o Our work presents the effectiveness of enhancing the
inference performance of real-time SDV perception algo-
rithms without compromising significantly in accuracy.
To achieve this, we utilize video streams captured by
the vehicle’s cameras to perform a comparative analysis.
This involves generating three pruning techniques (e.g.,
layer pruning, soft pruning, and group pruning) and also
determining the optimal pruning method.

e We design and implement three distinct quantization
workflows (e.g., Torch-TensorRT, ONNX Runtime Quan-
tization, Torch-ONNX-TensorRT) each supporting three
precision modes: FP32, FP16, and INTS8. Each pruned
models are quantized using these workflows resulting
in nine optimized workflows in total that are evaluated
across all precision levels.

e We conduct a comprehensive evaluation using four
key metrics: inference throughput, inference latency,
GPU/memory usage, and accuracy. The optimized work-
flow can achieve up to 18 x faster inference speed, 16.5x
higher throughput, and reduce the GPU/memory usage
by up to 30% without a noticeable drop in accuracy.
These metrics were assessed both after pruning (prior
quantization) and post-quantization, providing a thorough
analysis of the impact of our optimization techniques on
model performance.

« Upon our evaluation metrics, we recommend the Torch-
ONNX-TensorRT workflow quantized with FP16 preci-
sion and group pruning as the ideal solution for achieving
maximum inference efficiency (e.g., throughput, latency,
and GPU/memory usage) balancing with accuracy in
resource-constrained SDVs.

Organization. We organize our research throughout the pa-
per as follows. Sec. II provides the background of frameworks,
techniques, and methods which is denoted further in our paper.
Sec. III presents the experimental design of our paper and a
high-level overview of pruning and quantization workflows.
In Sec. IV we describe each pruning technique, fine-tuning,
and knowledge distillation in detail. Then, We elaborately
describe each of our workflows with each precision mode
in Sec. V. The Dataset description, System Configuration,
evaluation metrics, and experimental results of our research
are shown in Sec. VI and Conclusion in Sec. VIL

II. BACKGROUND AND RELATED WORK

In this section, we present a comprehensive overview of
the frameworks employed in our research, emphasizing the
key components such as pruning, knowledge distillation, and
quantization. We also provide an insightful review of prior
research advancements in time-critical real-world applications.



A. PyTorch

PyTorch [33] is an open-source deep learning framework
developed by Facebook’s Al Research Lab, known for its flex-
ibility and ease of use. It provides efficient GPU-accelerated
tensor operations and an Autograd library for automatic gra-
dient computation.

B. ONNX

ONNX [34] (Open Neural Network Exchange) is an open
standard that enables the transfer of machine learning models
between different frameworks, such as PyTorch and Tensor-
Flow, by defining a common model format.

C. TensorRT

TensorRT [35] is a high-performance deep learning infer-
ence optimizer and runtime library developed by NVIDIA.
TensorRT optimizes deep learning models using several key
techniques. Layer fusion combines multiple layers into a
single operation to reduce computation. Precision calibration
supports mixed-precision inference (FP16 and INT8), reducing
resource use while maintaining accuracy. Kernel auto-tuning
selects the best kernels for target hardware, enhancing exe-
cution efficiency. Dynamic tensor memory manages memory
allocation efficiently, minimizing footprint. FP32, FP16, and
INTS8 refer to different numerical precision levels used in
TensorRT to optimize inference performance.

FP32, or 32-bit floating point, provides the highest level of
precision and is typically used during the training phase of
deep learning models to ensure accurate gradient calculations.
FP16, or 16-bit floating point, offers a middle ground by
reducing the data size and computational demands while
still maintaining a high level of precision. This reduction
in precision allows for faster processing speeds and lower
memory usage. INTS, or 8-bit integer, represents an even lower
precision level, which drastically reduces both memory and
computational requirements. INT8 calibration involves quan-
tizing the model’s weights and activations to §8-bit integers,
which can lead to significant performance gains.

D. Pruning

Pruning [36] is a technique that reduces the complexity of
neural networks by removing less important or redundant pa-
rameters. This process makes models lighter, faster, and more
efficient, while ideally maintaining or improving accuracy. By
eliminating redundant parameters, pruning [37] significantly
reduces model size, making it more suitable for deployment
on resource-constrained devices. With fewer parameters, the
model requires less memory for storage and execution, which
is essential for edge devices with limited memory capacity.
Below are key terms associated with pruning:

o Parameters: Learnable weights in a neural network. Prun-
ing reduces the total number of parameters by removing
those considered unnecessary.

o Weights: Weights with minimal contribution to the
model’s predictions (such as those with small magni-
tudes) are pruned to create a sparser network.

e Sparsity: The ratio of zero-valued weights or pruned
connections in a model after pruning. Higher sparsity in-
dicates fewer active weights, resulting in a more compact
model.

o Pruning Ratio: The proportion of parameters removed
from the model during the pruning process.

o Weight Regularization: Techniques such as L1 or L2
regularization, applied during training, encourage smaller
weights, which can be more easily pruned later.

E. Quantization

Quantization [38] in deep learning refers to the process of
reducing the precision of the numbers used to represent a
model’s weights and activations. There are two primary meth-
ods for model quantization: post-training quantization (PTQ)
and quantization-aware training (QAT).

In PTQ [39], a model is first trained using standard, high-
precision techniques to achieve the desired accuracy. After
training, the model’s weights and biases initially represented as
32-bit floating-point numbers, are converted to lower-precision
numbers, such as 8-bit integers. PTQ is quicker to implement
as it does not require retraining, but may result in a slight
accuracy drop. A fine-tuning step is often applied afterward
to adjust the quantized weights and biases, aiming to recover
any lost accuracy due to the quantization process. QAT [40],
On the other hand, integrates quantization into the training
phase, allowing the model to adapt to low-precision arithmetic.
By simulating quantization effects on weights and activations
during training, QAT produces models that are more robust
to the precision constraints of deployment hardware. QAT
typically yields better performance as it accounts for precision
constraints throughout the entire training process.

F. Knowledge Distillation

Knowledge distillation [41] is a machine learning technique
where a smaller model, the ”Child,” is trained to replicate
the performance of a larger model, the "Mother.” The goal
is to transfer the knowledge from the mother model to the
child model using the mother’s outputs, typically probability
distributions over classes (soft targets) [42]. This technique
is especially valuable for smaller or pruned models, which
often struggle to achieve high accuracy due to their reduced
capacity. In perception systems, traditional models are trained
using hard targets, such as labeled bounding boxes and object
classes. However, knowledge distillation [43] enhances this
process by using soft targets from a larger Mother model,
which includes probability distributions [44] over object
classes and detailed bounding box predictions. These soft tar-
gets capture the Mother model’s confidence and insights into
object relationships, such as assigning probabilities to similar
classes like ”car” and “truck.” This richer information allows
the Child model to learn not only the object classifications but
also the spatial nuances in object localization more effectively.
Through distillation, the smaller Child model approximates the
Mother model’s performance, improving both class predictions
and bounding box accuracy, even with reduced capacity.

G. Fine-Tuning

Fine-tuning [45] in deep learning is the process of adjusting a
model to suit a specific task or dataset better. This technique
leverages the knowledge gained from the initial training on a
large dataset, making the model more effective with minimal
additional training. It is particularly important for smaller
or pruned models, as it helps them regain performance that
might be lost due to their reduced size or complexity. To
fine-tune a pruned model, a set of hyperparameters such as
learning rate, batch size, and number of epochs must be
optimized to balance maintaining the model’s efficiency and
recovering lost accuracy. One common approach is to use a
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Fig. 2: An overview of methodologies - (1) three pruning techniques, (2) fine-tuning, (3) knowledge distillation, and
(4) quantization through workflows (three workflows: Torch-TensorRT, ONNX Runtime Quantization, and Torch-ONNX-

TensorRT).

low learning rate (e.g., one-tenth of the original learning rate)
to ensure that the weights are updated cautiously, preventing
drastic changes that could lead to overfitting. Fine-tuning
can be done with or without freezing layers [46]. When
freezing the initial layers, only the later layers are updated
during training, which allows the model to retain the low-
level feature representations learned from the original training
dataset. Alternatively, full-model fine-tuning retrains all layers
of the network, which is more suitable when the new task
or dataset is significantly different from the original one.
By fine-tuning, these models can achieve high accuracy while
remaining efficient, making them suitable for deployment in
resource-constrained environments [47].

H. Prior Related Study

Several approaches including parallel processing [48], [49],
hardware acceleration [50], model compression [51], [52], and
model optimization [53], [54] have been proposed by authors
to maximize the inference performance suitable for real-world
SDVs. Techniques like parallelism [55] and pipelining [56]
are introduced to maximize usage of the limited resource [57].
TensorRT-based frameworks on Jetson Boards [58] are utilized
for optimization. Some authors worked on modifying the
model’s architecture to create a lighter model suitable for
edge devices [16], [59], [60]. Deep computation model [61]
was proposed of lightweight tensor to make the model suit-
able for resource-constrained edge devices [62]. Adjusting
weight sparsity in pruning for real-time execution on edge de-
vices [63] was introduced to solve the problem. Some authors
also suggest one-shot pruning for efficient real-time object
tracking [64], [65]. Dynamic resource allocation approach
was proposed to solve resource-constrained problems in edge-
assisted software-defined vehicles [66]. Tools like TensorRT
were explored to improve DL real-time inference [67] by
researchers. Also, techniques like image offloading to the

cloud were introduced to reduce computational cost on edge-
assisted real-world driving systems [68]. An efficient parallel
pruning approach proposed for efficient task-scheduling on
resource constraint systems [69]. Some authors accelerated
Neural Networks by intra-kernel pipelining for time-triggered
transportation systems [70]. DNN layering techniques were
introduced to maximize the inference with minimization in
memory usage [71]. However, existing studies often overlook
a comprehensive analysis of integrating pruning methods with
all quantization precision modes. While many focus on a
single precision mode, our approach conducts an extensive
investigation into the impact of three pruning techniques
combined with FP32, FP16, and INTS8 across three workflows
using various frameworks. This thorough examination aims to
optimize inference performance and provide deeper insights
into SDVs.

III. EXPERIMENT DESIGN

In this section, we present the notations of our methodology,
which will be referenced and explained in detail in the
subsequent sections of the paper. These notations form the
foundation for understanding the key processes and techniques
applied throughout the study. The overview of methodology
from Fig. 2, we first train a YOLOvSs and load the model.
. Then we develop three pruning techniques that are applied
to the YOLOvS5s for model optimization. After successfully
applying the pruning techniques, our experimental framework
includes fine-tuning and knowledge distillation. For each
pruned version of the model, we then implemented three
comprehensive workflows for quantization which is designed
using TensorRT, ONNX, and ONNX-Runtime [72] while
evaluating the model across three precision modes: FP32,
FP16, and INT8. From Fig. 2, the composed notations and
brief descriptions are listed below:



o Pr: Layer pruning (selectively prune a layer)

e Pg: Soft pruning (certain weights or channels set to zero)

e Pg: Group pruning (remove entire groups of connected
parameters)

e P;.pt: Layer pruned model

e Pg.pt: Soft pruned model

e Pg.pt: Group pruned model

e (P1,Pg,Pc).pt: the layer pruned model (Pr.pt) or the soft
pruned model (Pg.pt) or the group pruned model (Pg.pt)
e Waefauir: PyTorch default workflow

e Wy: Torch - TensorRT (the workflow with a collaborative
effort combining PyTorch with NVIDIA’s TensorRT)

e Wi: ONNX Runtime Quantization (the workflow with
a high-performance inference engine developed by Mi-
crosoft)

e Ws: Torch - ONNX - TensorRT (the workflow that com-
bines the flexibility of PyTorch, the interoperability of
ONNX, and the high-performance inference capabilities
of TensorRT).

Wiefauit: PyTorch Default: By default, in the PyTorch frame-
work, we load our Yolov5s model trained with the COCO
dataset and ensure that its inference runs on the GPU.

Pr: Layer Pruning: Layer pruning in deep learning models,
such as YOLOVS, involves selectively removing certain layers
or channels to reduce the computational load during inference
while preserving essential layers, such as the detection layer.
Ps: Soft Pruning: Soft pruning reduces the influence of certain
weights or channels without removing them, preserving the
model’s structure for easier fine-tuning. It targets less im-
portant channels by setting their weights and biases to zero,
allowing for recovery of performance after pruning.

Pg: Group Pruning: Group pruning is a technique used in neu-
ral networks to remove entire groups of connected parameters,
such as channels in convolutional layers, in a coordinated
way. By considering layer interconnections, it maintains the
network’s structural integrity and results in more hardware-
efficient sparsity patterns. This method involves using a de-
pendency graph to guide systematic pruning across layers.
(Pr,Ps.Pg).pt - Wo: Pruning - (Torch - TensorRT): In this
workflow, we improved pruned model performance using
Torch-TensorRT quantization, consisting of three phases: €@
simplifying the TorchScript module, @ transforming it for
optimized execution, and € executing the optimized graph
for efficient inference performance.

(Pr,Ps,Pc).pt - Wi: Pruning - (ONNX Runtime Quantization):

In this workflow, the ONNX Runtime Execution Provider
optimizes pruned model execution by leveraging hardware
acceleration libraries, enabling deployment across various
environments. The process involves € loading pruned models,
converting them from PyTorch to ONNX, and verifying the
conversion, and @ quantizing the models into FP32, FP16,
and INTS8 precision modes, optimizing them for deployment
across diverse hardware setups.

(Pr,Ps,Pg).pt - Wa: Pruning - (Torch - ONNX - TensorRT):
In this workflow, we accelerate pruned model performance
using quantization with our Torch-ONNX-TensorRT pipeline,
organized into three stages: @ exporting the PyTorch model
to the ONNX format for interoperability, @ building the
TensorRT engine for optimized execution on NVIDIA GPUs,

and € deploying the model to enhance inference performance
for efficient real-world operation.

Notation Description Organization
o psandp, | Lover Pruning SoftPruning & | qion 1v
Saved pruned models after ap-
Pr.pt, Ps.pt and Pg.pt | plying each pruning techniques Section IV
Pr, Ps and Py
Fine-tuning Applied to maintain the accuracy Section TV
of pruned models
Knowledge Distillation Applied to maintain the accuracy Section IV
once again
Quantization of all pruned
Pr,Ps,Pc).pt - Wo models(Pz,Ps,Pg).pt)  through Section V
Wo-(Torch-TensorRT)
Quantization of all pruned
Pr,Ps,Pg).pt - Wi models(Pz,Ps,Pg).pt)  through Section V
W1-(ONNX Runtime EP)
Quantization of all pruned
Pr,Ps,Pc).pt - Wa models(Pr,Ps,Pc).pt)  through Section V
Wa-(Torch-ONNX-TensorRT)

TABLE I: The summary of the key processes, including prun-
ing methods (layer, soft, group), fine-tuning and knowledge
distillation for accuracy recovery, and quantization using vari-
ous workflows (Wy, W7, W5), along with their corresponding
sections for further details.

The overview of our methodology Fig. 2, we note that first,
the original model goes through @ three different pruning
types Py, Pg and Pg. After Pruning performance, we save
each of the pruned models (Py.pt,Ps.pt and Pg.pt), @ we
then fine-tune the pruned models and @ distill knowledge
from the large YOLO model to keep up the accuracy with
accelerated performance. At this point, our pruned model is
lighter than the original model without significant compromise
in accuracy.From Fig. 2 @, Then we utilize our designed
workflow Wy, W7 and Wy (elaborately described in Fig. 4)
for FP32, FP16 and INT8 precision mode with PTQ and
QTA and calibration dataset for INT8. Table I provides a
concise summary of the key elements from Fig. 2, including an
overview of pruning and quantization techniques, along with
references to the sections where these processes are described
in detail.

IV. PRUNING OVERVIEW AND DESCRIPTION

In this section, we present a detailed explanation of the pruning
methods we developed, along with the subsequent fine-tuning
and knowledge-distillation processes. Following the Torch-
Pruning framework (provided by PyTorch) [73], we extended
and created three customized pruning methods for our specific
criteria and objectives. The three pruning methods are summa-
rized in Table II, and we provide a comprehensive description
of Fig. 3 for each pruning methods description following fine-
tuning and knowledge distillation in the following subsections.

Notation Description
Pr, Pruning technique to eliminate specific layer.
P Pruning technique to zeros out redundant parameters and
s weights.

Pruning technique to remove groups of connected param-

Ps
eters that are redundant.

TABLE II: The summary of three pruning techniques which

includes Py, (layer pruning), Pg (soft pruning) and P (group
pruning).
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A. Pr: Layer Pruning Procedues

Batch normalization (BN) [74] layers in deep learning models
like YOLOvVS normalize mini-batch inputs, speeding up train-
ing. These layers have parameters that can be pruned, followed
by activation and convolutional layers. By pruning BN layers
and removing corresponding channels in subsequent layers,
we reduce the number of operations needed during inference.
The process of applying Layer pruning in the Object detection
model is shown in Fig. 3.

Defining the importance measure: We use PyTorch’s Torch-
Pruning to create an importance measure object, MagnitudeIm-
portance, which determines the importance of each channel
based on the L2 norm. This calculation is used to decide which
channels to prune.

Identifying layers to ignore: We carefully Identify and mark
layers that should not be pruned. We ignore the detection
layer (Detect) during pruning to maintain the model’s detection
functionality.

Initializing the pruner: We define the number of iterative
pruning steps and the pruning ratio, indicating the fraction
of channels to be pruned in each step. Then, we create a
MagnitudePruner object using the model, including inputs,
importance measure, number of steps, pruning ratio, and
ignored layers. We set the pruning ratio to 20%.

Iterative pruning performance: For each pruning group we
identify the target layer and the pruning function. We select
the target batch normalization layers (nn.BatchNorm2d) for
pruning.

Pruned model performance: In the performance evaluation
step we save the pruned model Py .pt (layer pruned model) in
the disk and measure the evaluation metrics.

B. Pg: Soft Pruning Procedures

Soft pruning reduces the influence of certain weights or chan-
nels in a neural network without removing them, preserving
the model’s structure for easier fine-tuning and performance
recovery. Instead of eliminating weights, we set probable
pruned weights and biases to zero. As shown in Fig. 3, we

initiate soft pruning by measuring the L2 norm to assess
channel importance, targeting those with lower values, and to
maintain essential detection functions we exclude the detect
layers from pruning. The process if soft pruning is as follows:
Initialization of pruner: We initialize a MagnitudePruner
object with the following parameters. i) Importance: The
Magnitudelmportance measure. i) We set the global_pruning:
Set to False to perform local pruning within each layer. %)
Pruning_ratio: Set to 0.2 to prune 20% of the channels in each
iteration.

Soft pruning process: For each pruning group, the target
layer and pruning function were identified. Depending on the
pruning function, we set the weights and biases of the selected
channels to zero:

(a) For convolutional layers (Conv2d) and linear layers
(Linear), We set the weights of the pruned input channels to
zero by multiplying the corresponding weights with zero.

(b) For convolutional layers and linear layers, the weights
and biases of the pruned output channels were set to zero.

(c¢) For batch normalization layers (BatchNorm2d), both
weights and biases of the pruned channels were set to zero.

We set the weights of the pruned Convolutional, Linear

Layers, and Batch Normalization Layers (Input Channels and
Output Channels) to zero. And, if biases existed for these
layers, they were also set to zero.
After pruning performance: After pruning, the model Pg.pt
(soft pruned model) is saved to the disk. This saved model
retains the pruned weights and biases set to zero, facilitating
further fine-tuning if necessary.

C. Pg: Group Pruning Procedures

Group pruning removes groups of connected parameters, such
as channels in convolutional layers, in a coordinated way to
preserve the network’s structural integrity and dependencies.
This approach enforces structured sparsity by pruning entire
groups together, leading to more predictable and hardware-
friendly sparsity patterns. The process we follow to apply
group pruning is as follows:



Building dependency graph: From Fig. 3 we constructed a
dependency graph using Torch-Pruning’s DependencyGraph to
understand the dependencies between layers and ensure that
pruning actions maintain the structural sparsity of the network.

Pruning initial layers: For the initial layers of the model,
specifically the first two layers, we identified sublayers with
convolutional operations (conv). We pruned 20% of the chan-
nels in these layers by selecting indices for pruning and
obtaining a pruning group using the dependency graph. The
group was checked for consistency before applying the pruning
operation.

Pruning mid-layers: For mid-layers (indices 2, 4, 6, and
8), we applied the same strategy to sublayers (cvi, cv2, cv3)
containing convolutional operations. We pruned 20% of the
channels, ensuring the pruning actions were consistent with
the dependency graph.

Pruning additional layers: For other layers (indices 3, 5,
and 7) and the detection layers (indices 9 to 25), we continued
the same pruning strategy. For each layer with convolutional
operations, we selected 20% of the channels for pruning and
validated the pruning group before application.

Performance evaluation after pruning: Finally, the pruned
model Pg.pt (group pruned model) was saved to a file and
ready to calculate the evaluation metrics.

D. Fine Tuning Procedures
After applying the three pruning techniques described earlier,
we obtained three distinct pruned models Py,.pt(layer pruned
model), Pg.pt(soft pruned model), and Pg.pt(group pruned
model). To evaluate the effectiveness of each pruning method,
we executed the detect.py script on each pruned model. This
script allowed us to assess the mean Average Precision (mAP)
as well as the inference performance. However, the initial
results revealed that the mAP of the pruned models was
significantly lower than desired. From Fig. 3, the fine-tuning
was performed on the pruned models Py .pt (layer pruned),
Pgs.pt (soft pruned), and Pg.pt (group pruned) using the COCO
dataset.
Execution of build.sh Script and key parameters. We
started the fine-tuning process for each pruned model by
running the build.sh script -that utilizes a training command
specifying essential parameters such as image resolution, batch
size, number of epochs, and the optimization method. Then,
we created a custom script and custom script invoke it using
a command specifying the input image size (—img 640), batch
size (—batch 128), and the number of training epochs (—epochs
300).
Optimization method: As an optimizer we used the AdamW
optimizer, which adapts the learning rate and applies weight
decay to prevent overfitting. This optimizer is particularly
effective for fine-tuning as it provides better convergence
properties for pruned models.
Configuration and hyperparameters: We then employed a
configuration file (hyp.finetune.yaml) to adjust hyperparame-
ters, including learning rate, momentum, and weight decay.
Dataset: Finally, we performed the fine-tuning on the COCO
dataset, which provides a diverse range of object categories.
This allowed the pruned models to generalize well and recover
lost accuracy across a variety of object detection tasks.

By fine-tuning the pruned models, we were able to signif-
icantly improve their mAP, recovering much of the accuracy

lost during pruning.

E. Knowledge Distilation Procedures

In addition to fine-tuning, we further distilled knowledge
to the pruned models to mitigate the accuracy drop caused
by pruning further. The distillation, as illustrated in Fig. 3
significantly enhanced the performance of the pruned models,
allowing them to retain high accuracy despite their streamlined
structure. To improve the accuracy of the pruned models,
further, we applied a knowledge distillation technique, where
the knowledge from a larger model was used as the teacher
model for our pruned models. This distillation process trans-
ferred the knowledge from the YOLOvVSI large model into
the pruned models, helping them recover lost accuracy while
maintaining their reduced size and faster inference speed.
We incorporated Kullback-Leibler (KL) divergence as the
distillation loss, in addition to the traditional classification
loss, to guide the student models in mimicking the output
distribution of the teacher. By balancing the task loss and
distillation loss during training, the pruned models were able to
absorb valuable information from the larger YOLOv5] model,
helping them recover lost accuracy while maintaining their
reduced size and faster inference speed. Teacher Model: The

YOLOVS5I large model acted as the teacher model, while the
pruned models (which had been fine-tuned earlier) served
as the student models. Distillation process: The distillation

transferred knowledge from the YOLOv5l model into the
pruned models by minimizing the Kullback-Leibler (KL)
divergence between the teacher’s softened output logits and the
student’s output, alongside the traditional classification loss.
Key parameters: We set batch size and initialized teacher

model weight (YOLOVS]) and student model (pruned models)
weight for the distillation process in the script as - (—batch-
size 64), (—teacher_weight yolov5l.pt). The remaining process
involves training the pruned model (student) with the help of
the YOLOVSI teacher model.

V. QUANTIZATION WORKFLOW DESCRIPTION

In this section, we present a brief summary of the selected
quantization workflows in Table III. Detailed descriptions of
each workflow are provided in subsection V-A, subsection V-B
and subsection V-C.

Notation Description

Torch-TensorRT is a collaboration between Meta Al and
NVIDIA that combines PyTorch and TensorRT to optimize
DL models supporting quantization for FP32, FP16, and INT8
precision modes.

ONNX Runtime EP enables efficient model execution by
leveraging hardware acceleration libraries across different en-
vironments, supporting quantization for FP32, FP16, and INT8
precision modes.

Torch-ONNX-TensorRT improves inference by converting a
Wa PyTorch model to ONNX, then optimizing it into a TensorRT
engine for FP32, FP16, and INTS8 precision modes.

Wo

Wi

TABLE III: The summary of three quantization workflows.
Wy represent The (Torch - TensorRT) quantization workflow,
W1 represent (ONNX Runtime Execution Provider), and Wy
represent (Torch - ONNX - TensorRT) quantization respec-
tively.
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Fig. 4: An overview of quantization workflows for acceleration across multiple precision modes (FP32, FP16, INTS) applied
to pruned models. Workflow Wj: Torch-TensorRT performs quantization using the Torch-TensorRT framework to improve
model performance. Workflow W;: ONNX Runtime Quantization demonstrates the steps for executing quantization via the
ONNX Runtime Execution Provider Interface (EPI). Workflow Ws: Torch-ONNX-TensorRT integrates Torch and ONNX with
TensorRT for further quantization.

A. (Pr,Ps,Pg).pt - Wy:
Torch - TensorRT.

Pruned models Quantization with

In this workflow W, we accelerate the inference performance
of the object detection model YOLO by employing Torch-
TensorRT. The description of quantization through Torch-
TensorRT W, is as follows:

1y

2)

Loading pruned models and dataset selection: We
start the workflow W), by loading our pruned mod-
els from three pruning techniques: Py .pt(layer pruned
model), Pg.pt(soft pruned model) and Pg.pt(group pruned
model) which we saved in the disk after pruning correctly.
Now, we select our dataset, ensuring that the image size
is fixed at 640x640 pixels, and convert it into tensors.
Model tracing: Upon resizing the images to the specified
dimensions, we proceed to transform our pruned models
into TorchScript modules utilizing PyTorch’s Just-In-
Time (JIT) compiler. After transforming to TorchScript,
each pruned model— soft pruned, layer pruned, and
group pruned—is stored as a traced model shown in Fig. 4
and preserved on disk for further use.

Float32 - For optimization using 32-bit floating point
precision, we compile each traced model with TensorRT,
explicitly setting the precision to FP32. This process
requires specifying both the input shape and the data type
as torch.float32.

Float16 - We also create alternative versions of the mod-
els utilizing 16-bit floating point precision (FP16). This
is accomplished by changing the data type to torch.half,
which reduces the precision but significantly enhances
computational efficiency.

3)

B.

Int8 - To optimize the models for 8-bit integer preci-
sion, We select a representative calibration dataset that
captures the range of inputs the model will encounter
during inference. In Post-Training Quantization (PTQ),
a fixed range is chosen for each quantizer, often de-
termined through a calibration process. The calibration
process adjusts the scale and zero-point for each tensor.
This involves passing the calibration dataset through the
model to compute the dynamic range (min and max
values) of activations and weights. During Quantization-
Aware Training (QAT), we again fine-tune the calibrated
model to further enhance its accuracy. After calibration,
we compile the traced models with TensorRT, specify-
ing INTS8 precision using torch tensorrt.compile(model,
inputs=[torch_tensorrt.Input(example ‘input.shape)], en-
abled_precisions=torch.intS, calibrator=calibrator).
Inference performance: Next, we benchmark the FP32,
FP16, and INTS8 optimized models to compare their per-
formance with the original model. The process begins by
synchronizing the CUDA device for consistency. For each
image, we capture the start time using torch.cuda.Event(),
run the model to assess inference performance, and then
record the end time, followed by resynchronizing the
CUDA device to ensure accurate timing.

(Pr,Ps,Pg).pt - Wi: Pruned models Quantization with
ONNX Runtime Execution Provider (EP)

ONNX Runtime Execution Provider framework allows us to
ensure that ONNX models can be deployed across different
environments and can take full advantage of the underlying
hardware’s computational capabilities for quantization. The in-



teraction between ONNX Runtime and the execution providers
is managed through an API that assigns specific nodes or sub-
graphs for execution by the EP library on supported hardware.
The process of quantization using W is outlined below:

1) Loading pruned models and dataset selection: In this
workflow, we begin by loading the saved pruned models:
Pz .pt(layer pruned model) , Pg.pt(soft pruned model) and
Pg.pt(group pruned model) and specified dataset just like
the previous workflow W.

2) Pruned models to .onnx conversion: We export the
pruned models from PyTorch to the ONNX format. This
involves converting each of the three pruned models—soft
pruned, layer pruned, and group pruned—into ONNX
models. To export the model into onnx file format we
used torch.onnx.export() function. Following the con-
version, we verified the file format’s correctness using
the ONNX checker tool which is done by invoking
onnx.checker.check ‘model.

3) FP32 (single-precision floating point): For FP32, we
use the default settings, as this precision mode does not
require any specific flag or additional configuration for
quantization. The ONNX model remains in its original
floating-point representation.

4) FP16 (half-precision floating point): To enable
FP16 quantization, we configure the ONNX Runtime
to use the ORT Execution Provider with FP16 settings.
This involves specifying the (QuantType.QIntl16, Quant-
Type.QUInt16) in the ORT settings. FP16 provides a
balance between performance and accuracy.

5) INT8 (8-bit integer): First, we configure the ONNX
Runtime settings to enable INTS8 precision using the
Execution Provider Interface (EPI). This process involves
setting the quantization parameters within ONNX Run-
time, enabling both activation and weight quantization to
INTS precision. We implement a calibration process by
defining a custom CalibrationDataReader() class, which
reads and processes a representative calibration dataset.
This dataset is then used to compute the appropriate quan-
tization parameters through ONNX Runtime’s calibration
methods. Next, the quantize_static function is used to
apply these quantization parameters to the model. Specif-
ically, we provide the function with the original full-
precision ONNX model, and the calibration data reader,
and specify the desired quantization settings. In this case,
the activations are quantized using unsigned 8-bit integers
(QUInt8), while the weights are quantized using signed
8-bit integers (QInt8). The per_channel parameter is set
to True, enabling per-channel quantization for weights,
which improves accuracy. Additionally, the reduce ‘range
parameter is enabled to further enhance precision by
reducing the quantization range. The calibration method
selected is MinMax, which calculates the quantization
parameters based on the minimum and maximum values
observed in the calibration data.

Finally, along with the original full-precision model, FP16 and
INTS are then used by the ONNX Runtime Execution Provider
to optimize and produce quantized models ready for efficient
inference performance.

C. (Pr,Ps,Pg).pt - Wa: Pruned models Quantization with
Torch - ONNX - TensorRT

In this workflow, we enhance the inference performance of the
object detection model by converting the PyTorch model to the
ONNX format and then the TensorRT engine. After saving
the model in ONNX, we further optimize it by converting
the ONNX model into a TensorRT engine for three precision
modes: FP32, FP16, and INTS8. The process is described as
follows:

1) Loading pruned models and dataset selection: Like
previous workflows Wy and Wy, we start this workflow
W, after loading our pruned models saved in the disk:
P .pt(layer pruned model), Pg.pt(soft pruned model) and
Pg.pt(group pruned model). And, the dataset is also fixed
at 640x640 pixels ensuring the image size.

2) Pruned models to .onnx conversion: After load-
ing the pruned models from disk, we convert each
model to ONNX format using the torch.onnx.export
function, which preserves the model’s architecture.
The converted model is then verified using the
onnx.checker.check_model tool. Once verified, the final
yolo.onnx model is saved, making it ready for deployment
in ONNX-supported environments.

3) TensorRT engine building: To create the TRT engine
for a specific precision mode (e.g., FP32, FP16, or
INTS), we start the process by importing the necessary
libraries and setting up the TensorRT logger. The engine-
building procedure is outlined below and divided into two
sections: (z) the general engine-building process and (i¢)
the distinct steps we took to build the engine for each
specific precision mode.

Generic engine building. The generic TensorRT engine
building consists of a series of strategic steps: (z) We
initialize the TensorRT builder and configure its settings.
(i7) We then optimize resource allocation by setting
the maximum workspace size. (ii7) Next, we define the
network using the explicit batch flag to enhance batch
processing. (tv) We parse the ONNX model, identify
and mark the key output layer, and build a serialized
network by integrating the TensorRT builder, network,
and configuration, resulting in an optimized model ready
for deployment. (v) Finally, we create a function to
serialize and save the engine, defining paths for the
ONNX model and engine, and deserializing the engine
for future use.

Precision modes for engine building. FP32 (De-
fault Precision): The FP32 precision mode is the de-
fault setting, and no specific precision flag needs to be
set. FP16 (Half Precision): To enable FP16 precision,
we activate the FP16 flag in the builder configuration
by using builder_config.set_flag(trt.BuilderFlag.FP16).
This mode strikes a balance between performance
and accuracy. INT8 (Integer Precision): Enabling
INT8 precision requires setting the INT8 flag with
builder_config.set_flag(trt. BuilderFlag.INTS). Addition-
ally, to maintain accuracy, an extra calibration step is
performed using a dataset. This involves the ImageBatch-
Stream and Calibrator classes. INT8 offers the highest
performance in terms of throughput and latency, but
careful calibration is essential to preserve model accuracy.

4) Deployment of the inference performance: We calcu-



late performance metrics using the benchmark ‘trt'FP32
function, which measures inference with a TensorRT en-
gine in FP32 precision. Instead of passing the model, we
pass the engine and adjust the function accordingly. We
create a CUDA execution context for TensorRT inference,
managing resources and the pipeline. The input tensor is
converted to a NumPy array, with GPU memory allocated
for both input and output. A CUDA stream handles
asynchronous operations, and input data is flattened to
np.float32. After a warm-up loop, benchmarking involves
transferring data to the GPU, running inference, and
transferring the output back to the CPU. Each iteration
is timed within an n runs loop, and the times are used
to calculate the average inference time and FPS. Finally,
the CUDA stream is synchronized, and the optimization
profile is set to 0 to complete all operations.

We implemented similar benchmark functions for FP16
(benchmark_trt_FP16) and INT8 (benchmark_trt_INTS)
precision. The primary difference in benchmark_trt_FP16
is the precision mode used for inference, which bench-
marks the model in FP16. This mode can offer faster
performance and reduced memory usage compared to
FP32, especially on GPUs with Tensor Cores optimized
for FP16 calculations. The benchmark_trt_INTS function
benchmarks the engine in INT8 mode, which is faster and
more memory-efficient than FP32 and FP16, particularly
on GPUs optimized for INTS8 calculations.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first describe the datasets used in perfor-
mance analysis (presented in subsection VI-A) and experi-
mental setup (Our hardware/software setup is presented in
subsection VI-B). Later, we provide a brief description of
evaluation metrics in subsection VI-C and then present the ex-
perimental results and analysis (presented in subsection VI-D,
subsectionVI-E, subsectionVI-F and subsectionVI-G).

For the performance analysis, we first evaluate the original
(non-pruned, non-quantized) model on the validation dataset.
We then assess the pruned models (soft pruned, layer pruned,
and group pruned) and their quantized versions (FP32, FP16,
INTS8) on the same dataset. This analysis is organized into
distinct parts, each focusing on different aspects of the model
optimization process. After applying the three pruning meth-
ods outlined in Fig. 3, we obtained three distinct pruned
models. In the first subsection VI-D, we evaluate the per-
formance of pruned models referred to as Py.pt, Pg.pt, and
Pg.pt. This comparison was made prior to applying any quan-
tization techniques. Then, in subsectionVI-E, subsectionVI-F
and subsectionVI-G we present the accelerated performance of
quantized workflow (denoted as W, W7, and W5) on pruned
models. These workflows (Fig. 4) represent distinct paths for
implementing quantization, each with three precision modes.
Wy involves the use of Torch integrated with TensorRT, Wy
employs ONNX Runtime Quantization, and W5 incorporates
a combination of Torch, ONNX, and TensorRT. Hence, we
evaluated in total nine unique workflow metrics across three
pruned models using FP32, FP16, and INT8 precision modes.
The results, consistently analyzed for 640x640 images with
a batch size of 128, highlight the impact of pruning and
quantization.

A. Dataset Selection

To thoroughly evaluate our experimental results, we selected
datasets To evaluate our results, we used the KITTI [75],
BDDI100K [76], and COCO datasets [77], all well-suited for
object detection in SDVs. The KITTI dataset offers detailed
annotations in various urban scenarios, while BDD100K pro-
vides over 100,000 video sequences covering diverse driving
conditions. KITTI and BDD100K are particularly well-suited
for vehicle-related studies, offering real-world driving scenar-
ios across various road types, traffic conditions, and environ-
ments. The COCO dataset further enriches our analysis with
its extensive annotations and variety making it highly valuable
for training and testing. These datasets are crucial for assessing
object detection performance in SDVs.

B. Experiment Setup

Hardware Setup. Our hardware configuration in Fig. 5 in-
cludes an NVIDIA GPU Workstation with an Intel Xeon CPU
featuring substantial memory for handling large datasets and
running multiple programs simultaneously. The setup includes
four NVIDIA GeForce RTX 2080 Ti graphics cards, each with
11 GB of memory, providing robust parallel processing capa-
bilities essential for deep learning, rendering, and advanced
graphical computations. The RTX 2080 Ti is particularly val-
ued for its performance in Al and machine learning workloads.

[ | NVIDIA GPU Workstation

CPU Intel Xeon E5-2690 v4
GPU 4 x 11 GB GeForce RTX 2080 Ti
Frequency 2.6 GHZ
Core 14
Memory 64 GB
oS Ubuntu 18.04 LTS

Fig. 5: The configuration of NVIDIA GPU workstation.

Software Setup. We create a dedicated software environment
for our experiments using a Docker image called Torch-
TensorRT. This setup ensures consistency across systems.
Inside the Docker container, we configured ONNX, ONNX-
Runtime-GPU, and essential Python libraries required for our
tasks. The environmental software specifications are detailed
in Table IV.

TABLE IV: Software configuration.

CUDA  PyTorch
12.1 2.2.0

ONNX  ONNX Runtime
1.15.0 1.17

TensorRT  Torch-TensorRT
8.6.5 220

C. Evaluation Metrics

In this work, we utilize four evaluation metrics for our
performance analysis: inference throughput, inference latency,
GPU usage, and accuracy. These metrics are discussed in detail
below:

(¢) Inference throughput measures how many inputs, like
video frames or images, an object detection model can process
per second, typically in FPS or inferences per second. To eval-
uate throughput, we initialized various pruned and quantized
models, prepared input batches, recorded the total inferences
processed, and calculated throughput by dividing the total
inferences by the processing time.

(27) Inference latency is the time, measured in milliseconds
(ms), that an object detection system takes to process an input,
such as a video frame, and generate an output. To measure



TABLE V: Performance comparison across three datasets (COCO, KITTI, and BDD100K) in terms of MACs (Multiply-
Accumulate Operations), parameters, mAP (Mean Average Precision), and GPU/memory usage for YOLOvSs model and three
pruned models: Py.pt (layer pruned model ), Pg.pt (soft pruned model) and Pg.pt (group pruned model). This table highlights
the impact of each pruning technique on accuracy and resource efficiency, comparing them with the original YOLOvS5s model.
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(i) Latency Comparison between P, .pt, P.pt and P.pt

(ii) Throughput Comparison between P, .pt, P¢.pt and P.pt

Fig. 6: The inference latency and throughput for pruned models (Pz.pt , Pr.pt and Py .pt) on COCO, KITTI, and BDD100K
datasets. (i) shows the latency reduction achieved by the pruned models in milliseconds (ms), highlighting the faster efficiency
over the original YOLOvS model. (ii) displays the throughput in frames per second (FPS), demonstrating the improved
processing speed of the pruned models compared to the baseline YOLOvVS, with notable gains in each dataset.

latency, models (original, pruned, and quantized) were ini-
tialized after a warm-up phase. Input data was preprocessed,
and for each run, start and end times were recorded using
torch.cuda.synchronize(). Latency was computed as the aver-
age time difference over multiple iterations for each inference.

(#47) GPU/Memory usage measurement involves monitoring
and recording GPU resource usage, such as memory and
computational capacity, during model inference. We initialized
pruned and quantized models, using a concurrent thread to
monitor GPU usage with libraries like GPUTtil, recording data
at regular intervals for analysis.

(1v) Accuracy evaluates model performance using metrics
like Precision (correct positive predictions), Recall (correctly
identified positives), mAP (mean Average Precision across
all classes), and IoU (Intersection over Union) to assess
localization accuracy.

D. After Pruning Performance Analysis

As demonstrated above, we applied three pruning techniques
to the original YOLOVSs object detection model, resulting in
three pruned models. Each of these pruned models is lighter
than the original model in terms of Multiply-Accumulate
Operations (MACs) and the number of parameters. From
Table V, we observe the evaluation metrics, including MACs,
parameters, GPU/memory usage, and mAP for pruned models
across the COCO, KITTI, and BDD100K datasets.

Pruning Impact on Model Efficiency and Accuracy. The
application of three pruning techniques to the YOLOvSs model
demonstrates consistent trends across the COCO, KITTI, and
BDDI100K datasets.

The layer-pruned model Py .pt achieves MACs of 7.600735
G and parameters of 0.006718 G, reflecting a notable reduction
compared to the original YOLOvSs model, which has MACs
of 8.244113 G and parameters of 0.007226 G. The mAP(50-
95) of Py .pt is 0.473, which is slightly lower than the original
model’s mAP50 of 0.473, but still retains strong detection
capability. Additionally, the GPU/memory usage for Pr.pt is
reduced to 1008MB. The layer-pruned model offers a modest
reduction in Multiply-Accumulate Operations (MACs) and
parameters, while maintaining accuracy close to the original
model, making it an effective option for optimizing memory
usage without significantly compromising detection perfor-
mance.

In contrast, the soft-pruned model, which retains the original
MACs and parameters due to zeroed weights, experiences a
more notable drop in accuracy. However, this model improves
GPU memory efficiency, positioning it as a strong choice
where efficiency is prioritized over precision.

The group-pruned model consistently strikes the best bal-
ance between model size reduction and accuracy, achiev-
ing the largest decrease in MACs and memory usage with
only a moderate impact on performance. This trend holds
across all datasets(COCO, KITTI, and BDD100K), with the
group-pruned model demonstrating the most memory usage
optimization, making it suitable for applications where both
efficiency and accuracy are important.

Pruned models latency and throughput. From Fig.6, In
terms of latency, the soft-pruned model consistently achieves
the lowest latency across all datasets, outperforming the other



pruning methods. This can be attributed to its structure,
which remains intact while zeroing out weights, allowing
for smoother computation flow. The group-pruned model also
shows a notable reduction in latency, making it the second-best
option in this regard, while the layer-pruned model, though still
an improvement over the original YOLOVSs, has a slightly
higher latency compared to the other pruned models.

When evaluating throughput, the soft-pruned model once
again stands out, delivering the highest frames per second
(FPS) across the COCO, KITTI, and BDDI10OK datasets.
This highlights the method’s ability to maintain computational
speed while reducing unnecessary operations. The group-
pruned model follows closely behind, offering incremental
gains in throughput compared to the original model. And,
the layer-pruned model shows moderate improvements in
throughput.

Although, the soft pruning proves to be the most speed-up
pruned model in terms of latency and throughput, the group-
pruned model strikes the balance between speeding up (e.g.,
latency and throughput) and maintaining accuracy.

E. Performance Analysis on Pruned Models to (Torch-
TensoRT) Quantization: (Pr,Pg,Pq).pt - Wy

Figure 7 illustrates the inference latency and throughput of the

Torch-TensorRT workflow W on three pruned models: Py, .pt,

Pg.pt, and Pq.pt across the COCO, KITTI, and BDD100K

datasets.

Inference latency. For quantization of the layer-pruned model
Pr,.pt, using Torch-TensorRT Wy from Fig. 7(i) on the COCO
dataset, significantly reduces latency across all precision
modes. The most notable improvement is seen with INTS8
precision, where the latency is reduced by nearly 5x compared
to the Pruned model, and 6x faster than the original model
highlighting the effectiveness of quantization in improving
performance for real-time applications. Similar improvements
are observed with FP16 and FP32 precision modes, where the
layer-pruned model experiences 3-4x faster latency than the
original. From KITTI and BDD10OK Dataset we also observe
up to 6.2x faster speed after quantizing with INT8 precision.

For the soft-pruned model Pg.pt - Wy, the results show
that INTS precision quantization achieves the most significant
latency reduction. For the COCO dataset, The INT8 precision
mode reduces latency by nearly 5x compared to the soft-
pruned model and almost 9x faster than the original model.
Meanwhile, FP16 and FP32 also result in considerable latency
reductions. Similar trends are observed in the KITTI dataset
and BDDI100K Dataset. Once again, INT8 precision mode
outperforms others, offering the highest speedup. FP16 mode
also performs efficiently, making it a strong alternative when
a balance between accuracy and speed is required.

For the group-pruned model Pg.pt - Wy, quantization using
Torch-TensorRT also results in noticeable latency reductions
across all precision modes. On the COCO dataset, INT8
precision reduces latency by 5x compared to the unquan-
tized group-pruned model and more than 8x faster than the
original model. FP16 and FP32 also show significant latency
improvements. Similar results are observed on the KITTI
dataset and in the BDD100OK dataset, where INT8 precision
continues to offer the greatest speedup, delivering nearly 5x
faster latency than the unquantized group-pruned model, while
FP16 provides a good alternative with approximately 3 x faster

performance.

Inference throughput. The inference throughput of the Torch-
TensorRT workflow W) on three pruned models: Pr,.pt, Pg.pt,
and Pg.pt across the COCO, KITTI, and BDD100K datasets.

The quantization of soft pruned model Pg.pt - W archives
the best performance in terms of FPS among all three precision
modes. In the COCO dataset, INTS8 precision achieves a 5x
improvement in throughput compared to the pruned model,
and nearly 10x faster than the original model. FP16 continues
to offer solid performance gains (7.5 x faster). the layer-pruned
model Py,.pt, quantization using Torch-TensorRT significantly
boosts throughput. INT8 precision increases throughput by
nearly 5x compared to the pruned model and more than
6x faster than the original model. FP16 also shows strong
improvements, delivering over 3x higher throughput than
the pruned model. In the group-pruned model Pq.pt, INT8
precision provides the most substantial throughput increase,
with more than 5x higher throughput compared to the pruned
model and over 7.6 x faster than the original. FP16 also offers
considerable improvements, making it a reliable alternative for
efficient inference. Similar trends were observed in KITTI and
BDDI100K datasets.

Observation 1

o Wy - Torch-TensorRT (PyTorch integration with Ten-
sorRT), on (Pr,Ps,Pq).pt (layer, soft, and group pruned
models) produces 2 x faster performance in FP32, 3.5 %
faster in FP16, and 5x faster in INT8 compared to the
pruned models. Besides, it delivers up to 4x faster
performance in FP32, 6x faster in FP16, and 10x
faster in INT8 compared to the original model.

Accuracy. Table VI (i), presents the mAP results across
three datasets: COCO, KITTI, and BDD100K. The column
Pr.pt - Wy shows the mAP achieved by the quantized Torch-
TensorRT workflow at FP32, FP16, and INTS8 precision on
the layer-pruned model Py .pt. Similarly, Ps.pt - W, and Pg.pt
- Wy present the mAP for the quantized Torch-TensorRT
workflow at these three precision modes on the soft-pruned and
group-pruned models, respectively. The mAP results across the
COCO, KITTI, and BDD100K datasets show that FP32 and
FP16 precision modes maintain accuracy close to the original
pruned models after quantization. However, INT8 precision
generally leads to a more noticeable drop in accuracy. For
example, in the COCO dataset, the layer-pruned model sees
minimal changes with FP32 and FP16, while INT8 shows a
more significant reduction in mAP. Similar trends are observed
in the KITTI dataset, where the soft-pruned model retains
accuracy with FP32 and FP16 but experiences a drop with
INTS.

Overall, INT8 quantization offers strong inference perfor-
mance but typically results in a modest reduction in accuracy
compared to FP32 and FP16 across all datasets and models.

GPU/Memory Usage. Table VI (ii), presents the
GPU/memory usage after quantization of workflow Wy across
three precision modes on three pruned models. The data
shows that GPU/memory usage decreases most significantly
for INT8 precision mode. For instance, in the COCO dataset,
the layer-pruned model uses 1008 MB of GPU memory.
After quantization with Py.pt - W, in INTS8 precision mode,
the memory usage reduces to 860 MB. This indicates that
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Fig. 7: Comparison of inference latency and throughput using the Torch-TensorRT workflow W), based on three pruned models
Pr.pt, Ps.pt, and P .pt.(i) Latency comparison shows the reduction in inference time in milliseconds (ms) for different precision
modes (FP32, FP16, and INTS). (ii) Throughput comparison displays the improvement in frames per second (FPS) across the

same precision modes.

TABLE VI: (i) Accuracy: Mean Average Precision (mAP) results and (ii) GPU/memory usage (batch size 128) for Torch-
TensorRT workflow W, evaluated across COCO, KITTI, and BDD100K datasets. The table shows the mAP across different
precision modes (FP32, FP16, INT8) and their corresponding memory usage.

Yolo Pr.pt Pr.pt - Wy Ps.pt Ps.pt - Wy Pg.pt Pg.pt - Wy

FP32 | FP16 | INT8 FP32 | FP16 | INTS8 FP32 | FP16 | INT8

COCO(50) 731 720 720 710 .650 .672 .670 .665 .601 .695 .692 .680 .620

(i) KITTI .878 .864 .861 .854 790 784 784 781 726 .824 .823 .820 776

BDDI100K .875 .862 .862 .858 810 782 782 .780 721 .826 .826 817 749
COCO 1224 MB 1008 MB 1004 MB | 980 MB 860 MB 824 MB 820MB | 796 MB | 674 MB [ 964 MB | 960 MB | 938 MB 816 MB
(ii) KITTI 1224 MB 1004 MB 1004 MB | 976 MB 852 MB 820 MB 816 MB | 792 MB | 668 MB | 960 MB | 960 MB | 936 MB 812 MB
BDDI100K 1228 MB 1004 MB 1004 MB | 980 MB 864 MB 820 MB 816 MB | 792MB | 672 MB | 956 MB | 960 MB | 936 MB 816 MB

quantization to INTS8 results in GPU memory usage that is
85% of that required by the layer-pruned model(which is about
a 15% reduction compared to layer layer-pruned model).

FE. Performance Analysis on Pruned Models to (ONNX Run-
time) Quantization: (Pr,Pg,Pq).pt - W1

Fig. 8, presents the inference latency and inference throughput

of the ONNX Runtime EPI workflow W; on three pruned

models: Py.pt, Pg.pt, and Pg.pt on the COCO, KITTI, and

BDDI100K datasets.

Inference latency. From Fig. 8(i), we observe that quanti-
zation using ONNX Runtime EPI W, significantly reduces
latency for the layer-pruned model Py.pt across all datasets.
On the COCO dataset, quantization notably decreases latency,
particularly in INT8 precision, where performance improves
nearly threefold compared to the pruned model and four-
fold compared to the original. Similar trends are evident in
the KITTI dataset, where INT8 precision provides the most
significant speedup, achieving up to a 3.1x improvement
over the pruned model. The BDD100K dataset follows the
same pattern, with INT8 offering the largest latency reduc-
tion, demonstrating consistent gains in efficiency across all
precision modes.

For the soft-pruned model Pg.pt, quantization with W;
leads to latency reductions across all datasets. On the COCO
dataset, pruning alone provides a notable reduction in latency,
and after quantization, the INTS8 precision mode delivers the
most significant improvement, achieving nearly 3x faster
performance compared to the pruned model. Similar trends are

observed in the KITTI dataset and BDD100K dataset, INT8
precision continues to outperform other modes, offering the
highest latency reduction, making it nearly 3x faster than the
pruned model and over 5x faster than the original model.
These results highlight the efficiency gains provided by INTS8
quantization, with FP16 also offering a strong balance between
speed and precision.

For the group-pruned model Pqg.pt, quantization with
ONNX Runtime EPI yields significant latency reductions
across the datasets. On the BDD100K dataset, pruning itself
leads to a reduction in latency, and further quantization with
INT8 precision achieves the most pronounced reduction, pro-
viding a 3x speedup over the pruned model and nearly 4.7 x
faster than the original model. A similar pattern is observed in
the KITTI dataset where FP16 also demonstrates considerable
latency improvements, offering a balanced alternative for both
datasets.

Inference throughput. Fig. 8(ii) illustrates the inference
throughput of the ONNX Runtime workflow W; on three
pruned models: Pr.pt, Pg.pt, and Pg.pt across the COCO,
KITTI, and BDD100K datasets.

Quantization using ONNX Runtime W leads to noticeable
improvements in throughput across all models and datasets,
with INTS8 precision delivering the most performance gains.
Using the COCO dataset, the layer-pruned model Py,.pt, INT8
precision provides the most substantial improvement, deliv-
ering over 3x higher throughput compared to the pruned
model. Similarly, the soft-pruned model Pg.pt sees a major
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(i) The Inference Latency of (P, Py, Pg).pt- W, (ii) The Inference Throughput of (P, P, Pg).pt - W,

Fig. 8: Comparison of inference latency and throughput using the ONNX Runtime EP workflow Wy, based on three pruned
models Pr,.pt, Ps.pt, and Pg.pt. (i) Latency comparison shows the reduction in inference time in milliseconds (ms) for different
precision modes (FP32, FP16, and INTS). (ii) Throughput comparison highlights the improvement in frames per second (FPS)
across the same precision modes.

TABLE VII: (i) Accuracy: Mean Average Precision (mAP) results and (ii)) GPU/memory usage (batch size 128) for ONNX
Runtime workflow W7, evaluated across COCO, KITTI, and BDD100K datasets. The table shows mAP results across different
precision modes (FP32, FP16, INTS8) and their corresponding memory usage.

Yolo Pr.pt | Pr.pt - Wi Pgs.pt Pg.pt - Wi Pg.pt Pg.pt - Wy

FP32 | FP16 | INTS FP32 | FP16 | INT8 FP32 | FP16 | INTS8

COCO(50) 731 7120 720 718 .687 672 672 672 .649 695 695 .690 650

@) KITTI 878 864 .864 .861 .836 784 784 784 748 .824 .824 .824 792

BDD100K 875 .862 .862 .861 .829 782 782 782 .750 .826 .826 .826 .790
COCO(50) 1224 MB 1008 MB 998 MB 956 MB 712 MB 824 MB 812 MB 776 MB 524 MB 964 MB 956 MB 908 MB 656 MB
(i) KITTI 1224 MB 1004 MB 996 MB 956 MB 716 MB 820 MB 812 MB 772 MB 520 MB 960 MB 956 MB 904 MB 652 MB
BDD100K 1228 MB 1004 MB 996 MB 952 MB 712 MB 820 MB 816 MB 772 MB 516 MB 956 MB 952 MB 902 MB 648 MB

boost in throughput, with INT8 precision achieving more
than 3x the throughput of the pruned model and nearly
6x that of the original. The group-pruned model Pgs.pt on
the BDD100K dataset follows the same trend, with INTS8
precision offering the largest gains. Across the COCO, KITTI,
and BDDI100K datasets, quantization consistently enhances
throughput, particularly with INTS8 precision.

Observation 2

e W7 - ONNX Runtime Quantization (Post training
Static Quantization), on (Pr,Pg,Pc).pt (layer, soft, and
group pruned models) produces 1.5x faster in FP16,
and 3 x faster in INT8 compared to the pruned models.
Additionally, it delivers up to 3x faster performance in
FP16, and 6.1 x faster in INT8 compared to the original
model.

Accuracy. Table VII (i), provides a detailed overview of the
mAP results across three prominent datasets: COCO, KITTI,
and BDD100K. The column Py,.pt - W7, showcases the mAP
obtained through the quantized ONNX Runtime workflow at
different precision levels—FP32, FP16, and INT8—on the
layer-pruned model Py .pt. In a similar way, Pg.pt - W; and
Pg.pt - Wi reflect the mAP performance for the quantized
workflow applied to soft-pruned and group-pruned models,
respectively, across the same precision modes. Analyzing
the data, The mAP results across the COCO, KITTI, and
BDDI100K datasets demonstrate that the ONNX Runtime
quantization workflow (W) maintains accuracy well at FP32

and FP16 precision levels, closely aligning with the perfor-
mance of the original pruned models. For example, on the
COCO dataset, the layer-pruned model shows no change in
mAP at FP32, with only a slight reduction at FP16. However,
a more noticeable decrease occurs when transitioning to INT8
precision. This pattern is consistent across the KITTI and
BDDI100K datasets. Overall, INT8 precision leads to reduced
accuracy across all models and datasets, while FP32 and FP16
remain stable in terms of mAP performance.

GPU/Memory Usage. Table VII (ii) illustrates the
GPU/memory usage following the quantization of workflow
W, across three different precision modes applied to three
pruned models. The data reveals a reduction in GPU/memory
usage, particularly for the FP16 and INTS8 precision modes.
For example, in the KITTI dataset, the soft-pruned model
originally consumes 820 MB of GPU memory. After
quantization with Pg.pt - Wy, the memory usage drops to
772 MB in FP16 mode and further decreases to 520 MB
in INT8 mode. This demonstrates that quantization to INTS8
reduces the GPU memory requirement to approximately 70%
of what is needed by the soft-pruned model,(30% reduction
compared with soft pruned model) highlighting the efficiency
gains achievable through INT8 quantization.

G. Performance Analysis on Pruned Models to (Torch-

ONNX-TensoRT) Quantization: (Pr,Pg,Pg).pt - Wy

Fig. 9 showcases the inference throughput and latency of the
Torch-ONNX-TensorRT workflow W5 applied to three pruned
models: Py,.pt, Ps.pt, and Pg.pt across the COCO, KITTI, and
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(i) The Inference Latency of (P,, Pg, P;).pt- W,

(i) The Inference Throughput of (P,, Py, P).pt - W,

Fig. 9: The inference latency and throughput of Torch-ONNX-TensorRT workflow W5, based on three pruned models Py .pt,
Ps.pt, and Pg.pt.(i) Latency comparison shows the reduction in inference time in milliseconds (ms) across different precision
modes (FP32, FP16, INTS). (ii) Throughput comparison demonstrates the increase in frames per second (FPS) across the same

precision modes

TABLE VIII: (i) Accuracy: Mean Average Precision (mAP) results and (ii)) GPU/memory usage (batch size 128) for Torch-
ONNX-TensorRT workflow Ws, evaluated across COCO, KITTI, and BDD100K datasets. The table displays mAP results
across different precision modes (FP32, FP16, INT8) and their corresponding memory usage.

Yolo Pr.pt Pr.pt - Wa Ps.pt Ps.pt - W2 Pg.pt Pg.pt - Wa

FP32 | FP16 | INT8 FP32 | FP16 | INTS8 FP32 | FP16 | INT8

COCO(50) 731 7120 720 714 632 672 671 670 596 .695 .695 692 616

@) KITTI 878 .864 .862 861 781 784 784 182 702 824 824 .823 748

BDD100K 875 .862 .862 861 .780 782 782 .780 701 .826 .826 .822 745
COCO(50) 1224 MB 1008 MB 1002 MB 976 MB 828 MB 824 MB 818 MB 796 MB 660 MB 964 MB 958 MB 932 MB 824 MB
(i) KITTI 1224 MB 1004 MB 1000 MB 976 MB 826 MB 816 MB 812 MB 792 MB 656 MB 960 MB 956 MB 928 MB 820 MB
BDD100K 1228 MB 1004 MB 1004 MB 978 MB 828 MB 820 MB 816 MB 792 MB 652 MB 956 MB 952 MB 926 MB 818 MB

BDD100K datasets.

Inference latency. The results from Fig. 9(i), show significant
latency reductions across all datasets when applying the Torch-
ONNX-TensorRT workflow (W5) to pruned models. For the
layer-pruned model Py .pt, quantization leads to substantial
improvements, particularly with INT8 precision, achieving a
nearly 9.5x faster latency compared to the pruned model and
a 12x reduction over the original model on the COCO dataset.
Similar trends are observed across the KITTI and BDD100K
datasets, where INTS precision consistently delivers the great-
est speedup, followed by FP16 and FP32.

The soft-pruned model Pg.pt after quantizing with W5, also
exhibits considerable latency reductions after quantization,
with INT8 precision once again providing the most significant
improvement, reducing latency by up to 10x compared to
the pruned model. FP16 and FP32 show strong gains as well,
further enhancing the efficiency of the pruned model across
the datasets.

For the group-pruned model Pg.pt, quantization with Wy
delivers consistent latency reductions, particularly in INTS8
precision, which results in a 10x improvement over the
pruned model. FP16 and FP32 also show notable reductions,
enhancing the performance significantly across COCO, KITTI,
and BDD100K datasets. Overall, the application of W5 leads
to dramatic latency improvements, especially with INTS8 preci-
sion, offering up to 20x faster performance compared to the
original model and significant speedups across all precision
modes.

Infernce throughput. In the COCO dataset, the throughput
for Fig. 9(ii), the Torch-ONNX-TensorRT workflow (WW5)
delivers substantial throughput improvements across all pruned
models. For the layer-pruned model (Pr.pt), quantization
significantly boosts throughput, with INTS8 precision offering
the largest gains, achieving more than 9x improvement over
the pruned model and nearly 12X higher than the original
model. FP16 also demonstrates notable improvements, with
throughput nearly doubling compared to the pruned model.
Similarly, for the soft-pruned model Pg.pt, quantization
leads to dramatic increases in throughput, particularly with
INTS precision, which achieves more than 9x higher through-
put than the pruned model and over 17X higher than the orig-
inal. FP16 continues to provide strong gains, showcasing the
efficiency of the workflow in accelerating model performance.
Quantizing the group-pruned model P .pt follows the same
pattern, with INT8 precision delivering the highest speedup,
exceeding 9x the throughput of the pruned model and 12x
that of the original. Across all datasets, including KITTI and
BDDI100K, the quantization consistently accelerates through-
put, with INTS precision providing the most substantial gains,
followed by FP16.
Accuracy. Table VIII (i), provides a comprehensive sum-
mary of the mAP results for three key datasets: COCO,
KITTI, and BDD100K. The column Py,.pt - W5 highlights the
mAP achieved using the quantized Torch-ONNX-TensorRT
workflow across different precision levels—FP32, FP16, and
INT8—on the layer-pruned model Py.pt. Similarly, Pg.pt -



Wy and Pg.pt - Wy present the mAP performance for the
quantized workflow applied to soft-pruned and group-pruned
models, respectively, across the same precision modes.

The mAP results from the workflow W5 indicate that
quantization at FP32 and FP16 precision levels maintains
performance closely aligned with the original pruned models
across the COCO, KITTI, and BDD100K datasets. For the
layer-pruned model (Py,.pt) on the COCO dataset, the mAP
remains unchanged after quantization with FP32, with only a
slight reduction observed at FP16. However, a more noticeable
drop in mAP is seen when transitioning to INT8 precision. A
similar pattern is observed in the KITTI dataset. The group-
pruned model (Pg.pt) on the BDD10OK dataset follows the
same trend, with FP32 and FP16 maintaining the original
accuracy, but INT8 precision leading to a more substantial re-
duction. Overall, while FP32 and FP16 quantization preserves
accuracy, INTS8 precision tends to result in a measurable drop
in mAP across all models and datasets.

Observation 3

o W5 - Torch-ONNX-TensorRT (PyTorch to ONNX ex-
port with TensorRT), on (Pr,Ps,Pg).pt (layer, soft,
and group pruned models) produces 3.5x faster in
FP32, 7x faster in FP16, and up to 10x faster in
INT8 compared to the pruned models. Additionally,
it delivers up to 7x faster performance in FP32, 14 x
faster performance in FP16, and 18X faster in INTS8
compared to the original model.

GPU/Memory usage. Table VIII (ii) shows the GPU/memory
usage after quantizing workflow W, across three precision
modes (FP32, FP16, and INTS) on three pruned models. The
results indicate a significant reduction in memory consump-
tion, especially for the FP16 and INTS8 precision modes. For
instance, in the BDD100K dataset, the group-pruned model
initially uses 956 MB of GPU memory. After quantization
with Pg.pt - Wa, the memory usage decreases to 926 MB in
FP16 mode and further reduces to 818 MB in INT8 mode.
This is 82% usage of GPU/memory (reduces 20%) compared
to the original memory usage demonstrating the substantial
efficiency gains achieved through INT8 quantization.

VII. CONCLUSION AND FUTURE PLAN

This paper provides a comprehensive analysis of object de-
tection model inference performance using PyTorch frame-
works, with a focus on acceleration through pruning and
quantization within various workflows designed for resource-
constrained SDVs. Our evaluation covered key performance
metrics, including latency, throughput, GPU/memory usage,
and accuracy, following both pruning and subsequent quanti-
zation (using our designed workflows) of the models.

Our study offers an in-depth examination of the performance
of different pruned models, highlighting the strengths and
weaknesses of each workflow across three precision modes:
FP32, FP16, and INTS. This analysis provides valuable in-
sights for selecting the most suitable pruning method and
workflow for time-critical systems. Among the pruned models,
the group-pruned model strikes the best balance between in-
ference performance (throughput, latency) and accuracy, while
the soft-pruned model, though fastest in inference, exhibits a
notable drop in accuracy. Additionally, our results demonstrate

16

that the Torch-ONNX-TensorRT workflow yields the most
effective acceleration of model inference performance.

After evaluating the three precision modes, we conclude
that FP16 offers the optimal trade-off between inference per-
formance (throughput, latency, and GPU/memory usage) and
accuracy (mAP). This balance is crucial for real-world, time-
critical SDVs. Therefore, we recommend the Torch-ONNX-
TensorRT workflow quantized with FP16 precision and
group pruning as the optimal solution for applications
requiring maximum inference performance in resource-
limited SDVs. It can achieve up to 18 faster inference speed
and 16.5x higher throughput while reducing GPU/memory
usage by up to 30%, all with minimal impact on accuracy.

In the future, we will include the evaluation of real-time
performance metrics such as jitter (the variability in response
time), deadline miss rate, real-time inference accuracy (RTIA),
and memory bandwidth utilization, which will provide a more
comprehensive evaluation of the model’s performance in real-
time and resource-constrained systems like SDVs.
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