

Email: yluo11@wm.edu

Impact of Raindrops on Camera-Based Detection in Software-Defined Vehicles

William & Mary

Contact Details

Qualitative Analysis (RQ1)

Q RQ1: Which raindrop type most affects camerabased detection in daytime and nighttime?

Raindrop Impact on Object Detection

□ Microsphere and spherical >> flat and elongated □ Flat raindrops impact results more at night

	Decrease Rate	100% 80% 60% 40% 20%	 Flat Elongated Microsphere Spherical 		
			Car	Traffic light	
	Flat		3%	5%	
	Elongated Microsphere		6%	6%	
			25%	81%	
	Spherical		11%	10%	

RQ2: Which has a greater impact on camerabased detection: raindrop density or diameter?

Results

- Lower Density > Higher Density (gap: 13.7%)
- Our YOLO-RA consistently outperforms YOLOv7

Yichen Luo, Daoxuan Xu, Gang Zhou, Yifan Sun, Sidi Lu

Quantitative Analysis (RQ2)

□ Large Diameter > Small Diameter (gap: 6.7%) Lower Density > Large Diameter (gap: 6.2%)

Model	Y
YOLOv7	
YOLO-Mosaic	
YOLO-CBAM	
YOLO-RA (Ours)	

Comparative software **speed** (processing time)

Models	T_{inf} (ms)	T_{NMS} (ms)	T_{total} (ms)	FPS
YOLOv7	8.1	3.4	11.5	86.96
YOLO-RA (Ours)	6.1	2.4	8.5	117.65
SR3 + YOLOv7	8.2	3.6	11.8	84.75
SR3 + YOLO-RA (Ours)	6.4	4.2	10.6	94.34

LOv7	Mosaic	CBAM	Precision	mAP	F1
\checkmark			0.78	0.82	0.81
\checkmark	\checkmark		0.71	0.67	0.65
\checkmark		\checkmark	0.85	0.83	0.78
\checkmark	\checkmark	\checkmark	0.89	0.85	0.82