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We apply reinforcement learning to video compressive sensing to adapt the compression ratio. Specifically,
video snapshot compressive imaging (SCI), which captures high-speed video using a low-speed camera is
considered in this work, in which multiple (𝐵) video frames can be reconstructed from a snapshot measurement.
One research gap in previous studies is how to adapt 𝐵 in the video SCI system for different scenes. In this paper,
we fill this gap utilizing reinforcement learning (RL). An RL model, as well as various convolutional neural
networks for reconstruction, are learned to achieve adaptive sensing of video SCI systems. Furthermore, the
performance of an object detection network using directly the video SCI measurements without reconstruction
is also used to perform RL-based adaptive video compressive sensing. Our proposed adaptive SCI method can
thus be implemented in low cost and real time. Our work takes the technology one step further towards real
applications of video SCI.

CCS Concepts: • Computing methodologies→ Image compression; Computer vision; Reinforcement
learning.

Additional Key Words and Phrases: Image processing, compressive sensing, reinforcement learning

1 INTRODUCTION
Video compressive sensing is a promising technique inspired by compressive sensing (CS) [4, 7],
where multiple temporal video frames are mapped into a single measurement (i.e., a small number of
linear projections of the original video image data). We consider the snapshot compressive imaging
(SCI) [13, 19, 49], which uses a two-dimensional (2D) detector to sample the high-dimensional data
(such as high-speed video [21] and hyperspectral images [26]) and output measurements). The
underlying principle of video SCI is to modulate the high-speed video with a higher frequency
than the sampling rate of the camera [10, 21, 32]. In this manner, video SCI can utilize a low-speed
camera to capture high-speed videos.
Most recently, by using deep learning (DL) algorithms [5, 6, 42] for real-time reconstruction,

end-to-end sampling and reconstruction video SCI systems have been built [31]. In the meanwhile,
recent work has demonstrated the effectiveness of SCI cameras in real-world applications. For
example, [23] demonstrated that the detection accuracy of the measurements (i.e., compressed
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video images) generated by the SCI camera could achieve a satisfactory accuracy level (i.e., close to
the accuracy on reconstructed videos and comparable to the true value), which paves the way of
applying SCI in connected and autonomous vehicles (CAVs), e.g., conducting measurement-based
object detection with the objective of 𝑖) detection speed acceleration and 𝑖𝑖) bandwidth reduction
by reducing the transmission volume of detection results between CAVs and roadside-units.
However, as to the CAVs, since the driving scenes being captured are dynamic and vehicle

speed varies over time, it is imperative to realize adaptive video SCI for real-world applications,
i.e., automatically determining the optimal 𝐵 under different application environment. Take the
measurement-based object detection as an example, when the vehicle is driving under a slow-
motion scenario, increasing 𝐵 (𝐵 refers to the compression ratio) can further accelerate inference
speed while still guaranteeing a high measurement-based detection accuracy. In contrast, if the
driving environment changes rapidly, e.g., a red traffic light or an accident suddenly halt all vehicles,
𝐵 should be decreased to avoid missing high-speed information. Therefore, it is the right time to
take the developments one step further and make SCI systems suitable for real applications.
Bearing this concern in mind, this paper considers the video SCI system from the perspective

of adaptive sensing [51]. This is motivated by real applications, as scenes are dynamic, of various
backgrounds and speeds and thus different compression ratios should be used. Moreover, the
compression ratio should be adaptively adjusted for different scenes or as the contents in the scene
change. In this paper, we address this challenge by reinforcement learning (RL) [40]. Specifically,
we treat the video SCI system as an agent and the scene being captured as the environment. By
developing the policy and reward, we build an end-to-end RL-based adaptive video SCI system.

1.1 Video Compressive Sensing
As depicted in Fig. 1 (top-middle), for a high-speed video with 𝐵 frames X ∈ R𝑁𝑥×𝑁𝑦×𝐵 , a different
mask (coding pattern) C ∈ R𝑁𝑥×𝑁𝑦×𝐵 is imposed on each of them, and then these modulated
frames are summed into a single measurement Y ∈ R𝑁𝑥×𝑁𝑦 , and we define 𝐵 as the compression
ratio. Here, the coding pattern is a random matrix which consists of zeros and ones. This process
can be recognized as a hardware encoder and the key ingredient is the high-speed modulation.
Different approaches have been proposed in the literature, such as a shifting mask [15, 21] or a
digital micromirror device [32, 39], to achieve this modulation.
The other important part of video SCI is the software decoder, or the inverse algorithms, to

reconstruct the high-speed video from the compressed measurement given the masks [49]. For a
long time, the reconstruction algorithmwas the bottleneck precluding the wide applications of video
SCI. In the literature, diverse optimization methods developed for CS have been used [2, 44–46, 48].
It is only in the last few years that the quality of the reconstructed videos has been significantly
improved and they can be used in our daily life [19]. One common drawback of these model-
based optimization methods is the slow reconstruction speed. Most recently, this drawback has
been ameliorated by DL neural networks [6, 12, 25, 31], and has led to high-speed high-quality
reconstructions. In short, the hardware encoder and DL based software decoder have now paved
the way of end-to-end video SCI systems to be used in our daily life [24].

1.2 Temporal Adaptive Sensing in Video SCI
From the application perspective, to deploy video SCI systems into our daily life, different settings
are required for different scenes. Taking video surveillance as an example, video SCI cameras can
significantly reduce memory and transmission bandwidth costs, while, recovering the high-speed
video if needed. However, a fixed compression ratio (𝐵:1) is clearly not optimal in this case, since
when there are no moving objects in the scene, a large 𝐵 can be used, while when a high-speed
object exists in the scene, a small 𝐵 is desired for maintaining high quality reconstruction (Fig. 1).
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Fig. 1. The framework of video Snapshot Compressive Imaging (SCI) and reinforcement learning (RL) for
temporal adaptive sensing. SCI cameras (middle-top) are used to capture and thus sense the environment
(left) with an adaptive compression ratio (𝐵) determined by the RL policy (bottom-middle). In SCI, every 𝐵

frames are compressed to a single measurement, which is sent to the object detection module (bottom-right,
YOLOv3 [34] and YOLOv3-Tiny [43] are used here) directly; optionally, the measurement can also be sent
to the reconstruction module (top-right) to perform video recovery. The end-to-end convolutional neural
network, named E2E-CNN [31], is used to reconstruct high-speed video frames from a single measurement.
The detection rate and optionally the PSNR of the reconstructed video (available during training) are sent to
the RL module to adjust 𝐵 for different scenes. Here, ⊙ denotes the element-wise product. 𝐵1 is large for a
slow motion scenes while 𝐵2 is small for a high-speed motion scenes. Note that only one 𝐵 (𝐵1 or 𝐵2 as in the
two examples) is the output of the RL module at each time step. Only a single SCI camera is used, instead of
two camera agents, to capture slower and faster scenes. The goal of distinguishing slower and faster parts of
a scene in this plot is to highlight that our work can adapt the compression ratio (𝐵) by the proposed RL policy.

Moreover, we expect that the video SCI system can adjust this 𝐵 value automatically. This is what
we refer to as temporal adaptive sensing1 and we aim to address it by RL (Fig. 1 bottom) in this
paper.

1.3 Related Work
Although the idea of adaptive CS has been proposed for a long time, in most cases it applies to
spatial CS, i.e., following the single pixel camera architecture [8]. By contrast, for adaptive sensing
in video CS considered in this paper, only a few papers exist and the one closely related to ours
is [51], which considers the same problem but by using a motion estimation method to adapt 𝐵.
However, both the reconstruction algorithm and the adaptive sensing framework developed therein
produce low quality results. During the past eight years, the reconstruction algorithms of video
CS have been improved significantly, especially the ones based on DL [6, 31, 50]. Moreover, the
look-up table used in [51] only connected adaptive temporal sensing with motion estimation and

1The other proposal to adaptive sensing is to adjust the compression ratio spatially as a function of content (different places
on the image plane). However, this will pose a significant challenge for the hardware design and thus we do not consider it
here.
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did not consider the scene complexity and object detection rate, which are important factors for
the adaptive framework developed in this paper.

1.4 Reinforcement Learning
Reinforcement learning [14, 28, 40, 52] is an online algorithm designed to optimize behavioral
strategies in sequential decision problems [18], wherein agents continuously interact with unknown
environments and seek behavioral policies to maximize the expected cumulative reward. Many
challenging benchmark tasks can be performed in this framework, such as robotics [16, 17], high-
dimensional continuous control simulations [17, 36], the game of Go [38], Atari [27], and competitive
video games [37, 41].

An RL agent uses a policy to control its behavior, where the policy is a mapping from obtained
inputs to actions. One main difference between RL and supervised learning is that the RL agent is
never told the optimal action, instead, it receives an evaluation signal indicating the goodness of
the selected action. This matches well with an adaptive video CS considered in this work, where
the SCI camera usually does not know the environment and the objects in the scene being captured
are dynamic and their speed can vary over time. Recently, Zhang etal. designed an online RL-based
real-time video telephony system named OnRL to optimize video streaming applications [52]. A
model-based RL for microservice resource allocation over scientific workflows was proposed in [47],
and [1] leverage RL approach to high QoE video streaming over wireless networks. These works
are designed to schedule the right clients for prioritization in a high-load scenario to outperform
the status quo. While our paper mainly focuses on using RL to adapt video compression rate for the
temporal compressive sensing, which can automatically compress video for the model inference
and therefore reduce video transmission costs and accelerate video inference speed.

1.5 Contributions of This Paper
In this work, we revisit the temporal adaptive sensing problem in video CS by using three new
modules: 𝑖) end-to-end convolutional neural network (E2E-CNN) [31] based reconstruction, 𝑖𝑖)
RL for adaptive sensing control, and 𝑖𝑖𝑖) edge compression based applications [24] by conducting
object detection directly on the video SCI measurements without reconstruction. Our new regime
brings video SCI closer to real applications, such as, connected and autonomous vehicles.
Remarkably, previous work [24] proved that the object detection accuracy utilizing the com-

pressed measurements (without reconstructing the high-speed video) was close to the one obtained
using the original video. Therefore, the advantage of using SCI is clear since it accelerates in-
ference by performing measurement-based object detection. However, there is a non-negligible
trade-off between detection accuracy, reconstruction quality, and compression ratio, which hinders
the real applications of measurement-based object detection across diverse fields significantly.
In this context, the core innovation of our study is to provide actionable insights into solving a
real application challenge by automatically determining the optimal compression ratio using RL,
which can accelerate the deployment of SCI cameras and measurement-based object detection for
time-sensitive applications.
The rest of this paper is organized as follows. Section 2 describes the proposed RL model for

adaptive video CS. Extensive results are presented in Section 3 and Section 4 concludes the paper.

2 PROPOSED RL MODEL FOR ADAPTIVE VIDEO CS
In this section, we first describe the mathematical model of video SCI and briefly introduce the
state-of-the-art deep learning based reconstruction approaches. The proposed RL based adaptive
sensing is detailed in Sec. 2.3.
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2.1 Mathematical Model of Video SCI
Following Fig. 1 (top-middle), a 𝐵-frame dynamic scene X ∈ R𝑁𝑥×𝑁𝑦×𝐵 is modulated by 𝐵 fast
updated masks C ∈ R𝑁𝑥×𝑁𝑦×𝐵 , and then the modulated video frames are integrated into a single
measurement frame Y ∈ R𝑁𝑥×𝑁𝑦 by a camera sensor with the exposure time of these 𝐵 frames.
This process can be expressed as

Y =

𝐵∑︁
𝑏=1

C𝑏 ⊙ X𝑏 + Z, (1)

where Z ∈ R𝑁𝑥×𝑁𝑦 denotes noise, C𝑏 = C(:, :, 𝑏) and X𝑏 = X(:, :, 𝑏) ∈ R𝑁𝑥×𝑁𝑦 the 𝑏-th mask and
the corresponding video frame, and ⊙ the Hadamard (element-wise) product. Using a vectoring
operator, define 𝒚 = Vec(Y) ∈ R𝑁𝑥𝑁𝑦 and 𝒛 = Vec(Z) ∈ R𝑁𝑥𝑁𝑦 . Similarly, define 𝒙 ∈ R𝑁𝑥×𝑁𝑦×𝐵 as

𝒙 = Vec(X) = [Vec(X1)⊤, ...,Vec(X𝐵)⊤]⊤ . (2)

The measurement process in (1) can thus be expressed as

𝒚 = [D1, ...,D𝐵]𝒙 + 𝒛, (3)

where, D𝑏 = diag(Vec(C𝑏)) ∈ R𝑁×𝑁 , for 𝑏 = 1, . . . 𝐵 and 𝑁 = 𝑁𝑥𝑁𝑦 . The sensing matrix H =

[D1, ...,D𝐵] ∈ R𝑁×𝑁𝐵 in video SCI is highly structured and sparse. It has been shown in [13] that,
if the signal is structured enough, there exist SCI recovery algorithms with bounded reconstruction
error for 𝐵 > 1.

2.2 Deep Learning for Reconstruction and Detection
Reconstruction aims to recover high quality videos from the compressedmeasurementY captured by
the SCI camera. Significant efforts have been made to develop new reconstruction algorithms in the
past decade since high quality videos were recognized as the main output of a SCI camera. Recently,
with the aid of DL, this challenge has been addressed using deep convolutional neural networks
(CNN) and recurrent neural networks (RNN) [6, 31]. Most recently, motivated by the demanding
application of connected and autonomous vehicles, an SCI-vehicle-edge-cloud framework has been
proposed [24]. This leads us to think deeper about the main objective of an SCI camera. In addition
to the high quality videos, which is of course very important for the subsequent processing, we
also need fast detection and real-time control, from the raw measurements if possible. Studies in [24]
have proved that this dual objective is feasible and thus demonstrated the promising applications
of SCI.
E2E-CNN Model Background and Descriptions. Qiao et al. proposed the E2E-CNN, a well-
trained end-to-end convolutional neural network, in their recent work [31]. This model has led to
significant improvements over existing algorithms, providing millisecond-level reconstruction for
CI problems. Unlike conventional iteration-based algorithms such as those proposed by Liu et al.
[20], which require iteration and computation for each measurement, the E2E-CNN optimizes only
during the training phase and efficiently recovers images during the inference phase. The E2E-CNN
can provide video-rate high-quality reconstruction. In this study, we adopt the E2E-CNN algorithm
as our reconstruction model to verify its applicability for vehicle detection on the measurements.
We trained the E2E-CNN model using four selected video datasets.

To elaborate, the E2E-CNN model takes measurements and masks as input and produces a
reconstructed video as output. As shown in Figure 2(a), E2E-CNN involves a convolutional encoder
and decoder with Res-block connection [9]. The encoder and decoder parts each contain five residual
blocks, which are connected by two convolutional layers. The first convolutional layer performs
multi-dimensional feature extraction from the input data. After each convolution operation, ReLU
activation and batch normalization are applied, as illustrated in Figure 2(b). Furthermore, the
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Fig. 2. E2E-CNN architecture [23].

output of an encoder residual block is added to the input of the corresponding decoder residual
block, denoted by ⊕. Furthermore, the E2E-CNN model synthesizes the network input into the
final reconstruction by utilizing a large-span residual connection. Upsampling and pooling are not
employed in the network to prevent loss of image details, and sigmoid is employed as the activation
function to ensure the final output has the desired scale.
Taking one step further, it is not optimal to use a fixed compression ratio (𝐵:1) in SCI cameras

due to the dynamic nature of the scene. This dictates the research on adaptive sensing, and in this
paper, we fill this gap by RL since an SCI camera itself is an agent to sense (and thus capture) the
environment.

2.3 RL for Adaptive Sensing
In RL, the goal of the agent is formalized with respect to a specific signal passing from the environ-
ment to the agent. This signal is referred to as the reward (𝑟 ), which is a simple number at each
time step (𝑡 ), i.e., 𝑟𝑡 ∈ R. To be specific, the goal of this work is to maximize the cumulative reward
that the agent (SCI camera) receives.

2.3.1 States and Transition Graph. To make the SCI camera learn to automatically determine the
optimal 𝐵, we have provided a reward at each time step corresponding to the SCI camera’s forward
action 𝑎 including increasing 𝐵, keeping the current value of 𝐵, or decreasing 𝐵. More specifically,
in this work, we assume that six reconstruction models (E2E-CNN) with different values of 𝐵, i.e.,
𝐵 = {6, 8, 10, 12, 15, 20} have been trained for real-world applications, comprising a state set S =
{6, 8, 10, 12, 15, 20}. These values are heuristically selected by extensive experiments on various
videos to be able to obtain decent reconstructions.

At each state, the SCI camera can decide whether to 𝑖) actively increase 𝐵, 𝑖𝑖) keep the current
value of 𝐵, or 𝑖𝑖𝑖) decrease 𝐵. Note that "increase" and "decrease" can skip intermediate values
of 𝐵; for example, our policy allows changing 𝐵 = 15 to 𝐵 = 6 as in real life applications, when
a red traffic light or an accident can suddenly halt all cars (a large 𝐵 can be used) while all cars
will speed up (a small 𝐵 is required) when the traffic light turns green. We use 𝑎 to represent the
action set and 𝑎 = {𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, 𝑘𝑒𝑒𝑝, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒}, which is predicted by the RL model. 𝑆 ′ indicates
the updated state after conducting each 𝑎. As to each action step, RL provides the corresponding
reward 𝑟 (𝑆, 𝑎, 𝑆 ′), which is related to the corresponding environment.
Table 1 summarizes the dynamics of the transition table for a simple example. For the sake of

conciseness and concreteness, Table 1 only considers three states, i.e.,S = {6, 10, 15}. In this example,
a period of search that begins with 𝑆 = 6 cannot leave for the new state 𝑆 ′ with 𝑎 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒

since 6 is already the minimum value of 𝐵; therefore, the corresponding conditional probability
𝑝 (𝑆 ′ | 𝑆, 𝑎) = 0 and no related reward 𝑟 exists. However, with the action of increase, i.e., 𝑆 = 6
and 𝑎 = 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑆 could be increased to 10 or 15 (i.e., 𝑆 ′ = 10 or 15) with probability 𝛼 and
1 − 𝛼 , respectively, where 𝛼 ∈ [0, 1]. Similarly, a period of searching undertaken when 𝑆 = 15 and
𝑎 = 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 ends at 𝑆 ′ = 6 with probability 𝛽 and 𝑆 ′ = 10 with probability 1 − 𝛽 , with 𝛽 ∈ [0, 1].
The corresponding state transition graph is shown in Fig. 3.
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Table 1. State transition table of the proposed RL for adaptive video CS by only considering three states,
i.e., 𝑆 = 6, 10, 15. 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒2 denotes the increase of 𝐵 skips from 6 to 15 and similarly 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒2 denotes the
decrease from 15 to 6 with 𝛼, 𝛽 ∈ [0, 1].

𝑆 𝑎 𝑆 ′ 𝑝 (𝑆 ′ | 𝑆, 𝑎) 𝑟 (𝑆, 𝑎, 𝑆 ′)
6 decrease 6 0 −
6 keep 6 1 𝑟𝑘𝑒𝑒𝑝
6 increase 10 𝛼 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
6 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒2 15 1 − 𝛼 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
10 decrease 6 1 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒
10 keep 10 1 𝑟𝑘𝑒𝑒𝑝
10 increase 15 1 𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
15 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒2 6 𝛽 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒
15 decrease 10 1 − 𝛽 𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒
15 keep 15 1 𝑟𝑘𝑒𝑒𝑝
15 increase 15 0 −

6 15

keep

keep
keep
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Fig. 3. State transition graph of Table 1.

2.3.2 Reward Policy. In real-world applications, the reward policy design of RL is highly correlated
with the involved deep learning models and the specific scenes. As shown in Fig. 1, the SCI captured
measurements are sent to two modules i.e., the detection module and reconstruction module, to
perform object detection and optionally the video reconstruction, respectively. Therefore, we
consider the detection rate and PSNR of the reconstructed video as the key performance metrics
for the RL module to adjust 𝐵 for different scenes.
Here, PSNR [30] refers to the peak-signal-to-noise ratio between two images, and we use it to

evaluate the performance of the reconstruction model (E2E-CNN) [31]. More specifically, let X∗ ∈
R𝑁𝑥×𝑁𝑦×𝐵×𝐺 denote the ground truth video group, where 𝐺 denotes the number of measurements
being used, and X̂ be the reconstructed video by the E2E-CNNwith the same size asX∗. The average
PSNR of the video group is given by:

PSNR =
1
𝐵𝐺

−10 log

∑𝑁𝑥
𝑛𝑥=1

∑𝑁𝑦

𝑛𝑦=1 (𝑥𝑛𝑥 ,𝑛𝑦 ,𝑏,𝑔 − 𝑥∗𝑛𝑥 ,𝑛𝑦 ,𝑏,𝑔
)2

𝑁𝑥𝑁𝑦

 (4)
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Algorithm 1 RL for Adaptive video CS
Require: H, detection model (and reconstruction models).
1: Initial 𝐵, 𝑑𝑟𝑡ℎ as the threshold of acceptable detection rate, and optionally 𝑝𝑠𝑛𝑟𝑡ℎ as the

threshold of acceptable PSNR.
2: while Capturing do
3: Capture measurement of Y.
4: Perform detection on the measurement and output the detection rate. Optionally conduct

the reconstruction and calculate PSNR during training.
5: RL policy update by detection rate (and PSNR).

6: if 𝑑𝑒𝑡𝑒𝑐𝑡_𝑟𝑎𝑡𝑒<𝑑𝑟𝑡ℎ
then

7: if 𝑎=decrease OR
(𝑎=keep AND
𝐵=𝐵𝑚𝑖𝑛) then

8: 𝑟 ← 𝑟1
9: else
10: 𝑟 ← 𝑟2
11: end if
12: else
13: if 𝑎=increase OR

(𝑎=keep AND
𝐵=𝐵𝑚𝑎𝑥 ) then

14: 𝑟 ← 𝑟1
15: else
16: 𝑟 ← 𝑟2
17: end if

18: end if

19: if PSNR provided then
20: if PSNR > 𝑝𝑠𝑛𝑟𝑡ℎ then
21: if 𝑟 > 0 then
22: 𝑟 ← 𝑟 ∗ 𝜆1
23: else
24: 𝑟 ← 𝑟 ∗ 𝜆2
25: end if
26: else
27: if 𝑟 > 0 then
28: 𝑟 ← 𝑟 ∗ 𝜆2
29: else
30: 𝑟 ← 𝑟 ∗ 𝜆1
31: end if
32: end if
33: end if

34: Output 𝐵, 𝑟 .
35: end while

where 𝑥𝑛𝑥 ,𝑛𝑦 ,𝑏,𝑔 and 𝑥∗𝑛𝑥 ,𝑛𝑦 ,𝑏,𝑔 denote the (𝑛𝑥 , 𝑛𝑦)-th pixel in the 𝑏-th frame of the 𝑔-th measurement
in the estimated video and ground truth video, respectively. Usually, the lower the value of 𝐵, the
higher the PSNR (smaller error), and the better the quality of the reconstructed image.

In this work, the goal of video CS is to conduct object detection on themeasurements (compressed
data captured by SCI cameras) with an adaptive compression ratio (𝐵). Therefore, apart from PSNR,
the detection rate is a good objective metric for this task to assist the adjustment of 𝐵, i.e., it is also
sent to the RL module to adjust 𝐵 for different scenes. Other metrics can also be used in the future
for the same or different tasks.

Algorithm 1 presents the RL reward mechanism for adaptive temporal video CS. As depicted in
it, after defining the sensing matrix H and the initial 𝐵, the RL module will predict the action (i.e.,
increase the value of 𝐵, keep the current value, or decrease it) based on the captured measurement
of Y, and update 𝐵 accordingly. We will then perform object detection through YOLOv3-Tiny
on the measurements and calculate the detection rate. Here, YOLOv3-Tiny [11] is a light-weight
DL algorithm designed for resource-constrained devices, with superior advantages on fast object
detection due to the significantly reduced parameters. Optionally, the measurements can also be
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sent to the reconstruction module for video recovery, and the PSNR of the reconstructed video
(available during training) will be sent to the RL module to adjust 𝐵 for different scenes.

Lines 6-11: The RL module first defines the thresholds (lower bounds) of the acceptable detection
rate and PSNR as 𝑑𝑟𝑡ℎ and 𝑝𝑠𝑛𝑟𝑡ℎ, respectively. The higher the values of 𝑑𝑟𝑡ℎ and 𝑝𝑠𝑛𝑟𝑡ℎ the
smaller the value of 𝐵. Consider a round of capturing as an example; if the calculated detection
rate is smaller than the threshold, i.e., 𝑑𝑒𝑡𝑒𝑐𝑡_𝑟𝑎𝑡𝑒 < 𝑑𝑟𝑡ℎ, it reveals that the current 𝐵 is larger
than the optimal value, so we expect the RL module to output a smaller 𝐵. In this context, if 𝑖) the
corresponding action 𝑎 indicates to decrease 𝐵, or 𝑖𝑖) the action 𝑎 is to keep the current 𝐵 when
𝐵 already achieves its minimum value, then the RL module will assign a positive reward 𝑟1 as
encouragement; otherwise, it will assign a negative reward 𝑟2 as penalty.

Lines 12-18: Similarly, if𝑑𝑒𝑡𝑒𝑐𝑡_𝑟𝑎𝑡𝑒 > 𝑑𝑟𝑡ℎ, it reveals that the current 𝐵 is smaller than the optimal
value, so we expect the RL module to output a larger 𝐵. In this context, if 𝑖) the corresponding
action 𝑎 indicates to increase 𝐵, or 𝑖𝑖) the action 𝑎 is to keep the current 𝐵 and 𝐵 already achieves its
maximum value, then the RL module will assign a positive reward 𝑟1 as encouragement; otherwise,
it will assign a negative reward 𝑟2 as penalty.

Lines 19-33: Optionally, if reconstruction is conducted and the corresponding PSNR is provided,
the reward mechanism will take it into account: 𝑖) when PSNR > 𝑝𝑠𝑛𝑟𝑡ℎ (i.e., revealing that the
RL module should increase 𝐵), if the current cumulative reward 𝑟 is positive, the RL module will
update the reward by 𝑟 · 𝜆1 (𝜆1 ∈ (1, 2), we let 𝜆1 = 1.1) to increase the related reward; otherwise,
the reward will be updated by 𝑟 · 𝜆2 (𝜆2 ∈ (0, 1), we let 𝜆2 = 0.8) to weaken the reward. 𝑖𝑖) When
PSNR < 𝑝𝑠𝑛𝑟𝑡ℎ (i.e., revealing that the RL module should decrease 𝐵), if the current cumulative
reward 𝑟 is positive, the RL module will update the reward by 𝑟 · 𝜆2 to weaken the related reward;
otherwise, the reward will be updated by 𝑟 · 𝜆1 to increase the reward. Finally, Algorithm 1 will
output 𝐵 and the cumulative reward 𝑟 .
Specifically, in our experiments, during training when PSNR is available, we consider three

scenarios: 𝑖) PSNR<24, 𝑖𝑖) 24 ⩽ PSNR⩽28, and 𝑖𝑖𝑖) PSNR > 28. The range 24 ⩽PSNR⩽28 indicates a
good performance of the reconstruction model. Since we expect to obtain a relatively higher 𝐵, we
set the corresponding reward to 𝑟 = |PSNR − 24| ·𝐵; this way, a higher 𝐵 will provide a higher reward,
encouraging the agent to figure out a higher 𝐵 while guaranteeing the reconstruction quality. When
PSNR<24, which denotes a poor quality reconstruction, we should reduce 𝐵; therefore, the reward
𝑟 is negative as a punishment. Similarly, if PSNR>28 in the current time step, we could further
improve the value of 𝐵, so the reward 𝑟 is positive to encourage a higher 𝐵. Although the specific
positive and negative rewards depend on the specific scene, the basic idea is the same.

2.3.3 RL Agent. We adopt model-based reinforcement learning method, and build an LSTM model
as an agent to make inferences with historical information. As for the input and output of the LSTM
model, the input is the most latest100 decision values and the corresponding reward value, as well
as the array composed of the detection rate and PSNR, and the output is the predicted action.

3 EVALUATION RESULTS
3.1 Datasets and Experiment Setting
We choose four case studies to show how the proposed RL module can automatically adjust 𝐵 for
different scenes, including urban, highway, grocery store, and NBA scenes. For each case study, we
select a specific dataset to train and test the RL module.

Urban Dataset: We selected the public dataset of traffic video (PDTV) [35] which provides traffic
videos at three intersections with annotations for real transportation applications, such as tracking
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road users and detection of pedestrian infractions. The video dataset was collected at three sites of
Belarus and Canada with a resolution of 640 × 480 pixels at 30 frames per second (fps), and the
traffic scenes cross diverse traffic, lighting, and weather conditions.

Highway Dataset: The DynTex dataset [29] is the first collection of high-quality dynamic texture
videos that are structured by videos’ underlying physical processes such as waving motion and
discrete units, with the goal of serving as a standard database for dynamic texture research. Nine
videos related to traffic, with a resolution of 720 × 576 pixels at 30 fps were selected.

Grocery Store Video Dataset: These videos are collected from retail surveillance cameras at a
middle-sized grocery store. The camera captures top-down views monitoring both the incoming
and outgoing customer flow at the entry gate. Eight video clips with a resolution of 1920 × 1080
pixels at 30 fps were selected.

NBA Dataset: This is a publicly available NBA dataset to test our proposed framework on high-
speed sport motions. In the video, two groups of basketball players are moving fast, which is
significantly different from other scenes. We selected 7 video clips with a resolution of 640 × 480
pixels at 30 fps for the experiments.

3.2 Training Details
E2E-CNN Training and Validation. We have six compressed versions of the same video sets
to train the E2E-CNN reconstruction modules, i.e., using 𝐵 = 6, 8, 10, 12, 15, 20 and the network
structure proposed in [31]2. We combine the compressed video segments from the selected video
datasets for training and testing. We randomly select 80% of the measurements for training and the
rest for validation. Since not all of these public datasets provide annotations, we directly employ
the open YOLOv3 network3 on the original public video dataset to obtain labels (bounding boxes
of targets) and treat these labels as the ground truth.

Following [6], we define the normalized measurement from the forward model of SCI in (1) as

Ȳ = Y./∑𝐵
𝑏=1C𝑏 . (5)

This normalized measurement removes the mask artifacts especially in the background and we use
it to show the speed of the scene when presenting the results.

RL Training. The RL algorithm seeks to maximize a certain measure of the agent’s cumulative
reward, as the agent interacts with the environment. In this work, we use the OpenAI Gym
framework [3] to build the RL environment. OpenAI Gym focuses on the episodic setting of RL,
where the agent’s experience is divided into a series of episodes. For each episode, the starting
state of the agent is randomly sampled from a distribution, and the interaction proceeds until it
reaches a terminal state under the specific environment. For each use case, we selected the related
types of video clips to train the RL model on an NVIDIA GPU workstation (4×GeForce RTX 2080
Ti graphics cards), with the goal of maximizing the expectation of total reward per episode, and to
achieve a high level of performance in as few episodes as possible. We retrained the object detection
model (YOLOv3-Tiny) on the SCI measurements, along with the RL model.

2Code from: https://github.com/mq0829/DL-CACTI.
3The YOLO series algorithms were firstly proposed in [33], and are well known for fast detection speed by simple and clear
algorithm structure. One popular algorithm, YOLOv3 [34], automatically selects the suitable initial regression frame by
incorporating the 𝐾-means clustering approach for a specific input dataset.
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3.3 Adaptive Sensing Results Based on PSNR
To prove the concept, we first only consider the reconstruction module with PSNR available but
without using the detection rate, aiming to verify the RL module. The adaptive 𝐵 results as well as
the PSNR are shown in Fig. 4 for the Urban and Highway data, and in Fig. 5 for the Grocery-store
and NBA data. Note that in the Urban and Highway data, we freeze the videos (in the middle part)
and speed them up by skipping frames (last part) to simulate different velocities of the vehicles.

It can be seen from Fig. 4 that starting from a random 𝐵, when the video is frozen, RL will adjust
𝐵 to a larger value such as 15 and when the video is speeding up in the last hundreds of frames,
𝐵 is adjusted to a small value such as 6 or 8. Differently from these simulated videos, persons in
the grocery store and players in the NBA data change speed by themselves, which are real videos
that SCI cameras may be deployed for. Again, as shown in Fig. 5, starting from a random 𝐵, when
the persons or players move fast, our RL module will infer a smaller 𝐵 and when nobody moves, a
large 𝐵 such as 20 is inferred. When people start to move, 𝐵 drops again. These four videos clearly
verify that our RL works well with respect to reconstruction quality and PSNR.
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Fig. 4. (𝑖-𝑖𝑖) Reconstruction PSNR (dB) and adaptive 𝐵 estimated from the reconstructed Urban (left) and
Highway (right) video based on PSNR only, plotted against frame number. (a-f) Normalized measurements
with vehicles at different velocities.
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Fig. 5. (𝑖-𝑖𝑖) Reconstruction PSNR (dB) and adaptive 𝐵 estimated from the reconstructed Grocery-store video
(left) and NBA video (right), all are plotted against frame number. (a-f) Normalized measurements with
vehicles at different velocities.
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Next, we show results based on the detection rate, as the PSNR is usually not available in real
cases.
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(e) Reconstructed frames 512~517 with adaptive 𝑩 (current 𝐵 = 6, average all 565 frames 𝐵 = 13.64), 
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Fig. 6. Adaptive 𝐵 from the detection rate on the measurements directly. (a) Reconstruction PSNR (dB) and
adaptive 𝐵 (frames) (average adaptive 𝐵=13.64) from the measurements, all are plotted against frame number.
(b-d) Normalized measurements when there is no truck, two trucks, and four trucks moving inside the scene,
adapted 𝐵 = 6, 20, 6, respectively. (e) Reconstructed frames 512∼517 from the measurement in (d) with adaptive
𝐵. (f) Reconstructed frames 512∼517 with non-adaptive (constant) 𝐵 = 12. (g) Vehicle detection results on the
raw images and measurements with different 𝐵 = {6, 8, 10, 12, 15, 20} in the same video clip. Videos in the SM.
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(f) Reconstructed frames 1050~1055 with non-adaptive (constant) 𝑩 = 15,

average all 1095 frames PSNR = 21.5990dB, average all 1095 frames detection rate = 56.35% 
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Fig. 7. Adaptive 𝐵 from the detection rate on the measurements directly. (a) Reconstruction PSNR (dB)
and adaptive 𝐵 (frames) (average 𝐵=15.56) from the measurements, against frame number. (b-d) Normalized
measurements when the basketball players are running from the left-hand scene to stop at the right-hand
scene, adapted 𝐵 = 15, 20, 6, respectively. (e) Reconstructed frames 1050∼1055 from the measurement in (d)
with adaptive 𝐵. (f) Reconstructed frames 1050∼1055 with non-adaptive (constant) 𝐵=15. (g) Person detection
results on the raw images and measurements with different 𝐵 = {6, 8, 10, 12, 15, 20} in the same video clip.
Videos in the SM.

3.4 RL based on Detection Rate
In real life applications, the detection rates are sent to the RL module to adjust 𝐵. As mentioned
before, we employ YOLOv3 [34] on the original video dataset to obtain labels (bounding boxes of
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targets) and treat these labels as the ground truth. Then, we employ YOLOv3-Tiny [11], a light-
weight DL algorithm designed for resource-constrained devices, on the measurements to detect
vehicles and person for the sake of speed. The detection can also be performed on the reconstructed
videos, which can potentially increase the accuracy by trading off power and latency [24]. In this
work, aiming to conduct adaptive video CS on the end-user cases with limited power but requiring
instant responses such as in self-driving vehicles, we use the detection on measurements directly.
In terms of detection metrics, a common way is to compute the intersection-over-union (IoU)

between ground truth and prediction. IOU is a measure of the degree of overlap between two
detected frames for target detection:

IOU =
area

(
𝐵𝐵𝑂𝑋𝑝 ∩ 𝐵𝐵𝑂𝑋𝑔𝑡

)
area

(
𝐵𝐵𝑂𝑋𝑝 ∪ 𝐵𝐵𝑂𝑋𝑔𝑡

) , (6)

where 𝐵𝐵𝑂𝑋𝑔𝑡 represents the bounding box of the ground truth (GT), and 𝐵𝐵𝑂𝑋𝑝 of the predicted
frame. Predictions whose IoUs are larger than 0.5 are considered as true positives (TP). We use
mAP (mean Average Precision) as our detection rate score:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 =
𝑇𝑃

all detections
, (7)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 =
𝑇𝑃

all ground truths
, (8)

where𝑇𝑃 is the number of detection frames with IoU > 0.5 and 𝐹𝑃 with IoU ⩽ 0.5 detection frames,
or the number of redundant detection frames detecting the same GT. 𝐹𝑁 refers to the number of
missing detections.
In our four datasets, we only detect vehicles in the highway and urban scenarios, and in the

other two scenarios, we only detect persons.
During implementation, we calculate themAP for each batch size corresponding to𝑄 =𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒×

𝐵 video frames (for the 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 measurements). The reason for this is that the calculated
DetectionRate (mAP) will not fluctuate sharply, but will change with the scene within a cer-
tain range. This is also the adaptation time of our RL module and the 𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 can be set to one
for fast adaptation in real applications.
For the reward design, we set the threshold (lower bound) of the acceptable detection rate

as 75%, i.e., 𝑑𝑟𝑡ℎ = 75%, and obey the reward mechanism in Algorithm 1 for adaptive video CS.
The detection rate here is calculated by taking the IOU of all the bounding boxes predicted by
YOLO-Tiny on the vehicle/edge and YOLOv3 on EdgeServer, and the bounding boxes in the
measurements and reconstructed frames cannot be completely overlapped. Since the bounding
boxes in reconstructed frames do not completely coincide with the bounding boxes inmeasurements,
we found in our experiments that 75% is a reasonable value, and the normal training and application
of the reconstructed frame can be achieved in selected videos under diffenent scenarios. We also
show the PSNR of the reconstructed videos for comparison purposes.
We believe that it is the right approach to compare our proposed method against a fixed com-

pression ratio (𝐵:1). For adaptive sensing of video CS considered here, the only paper related to
ours is [51], which considers the same problem by using a motion estimation method to adapt
𝐵. However, both the reconstruction algorithm and the adaptive sensing framework developed
therein produce low-quality results. Specifically, it has been shown in [6, 31] that the E2E-CNN
used in this paper can provide much better results than the reconstruction algorithms used therein.
Besides, the look-up table used therein is not flexible. Our main goal of this paper is to prove that
RL works well in adaptive video compressed sensing.
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Highway Scene: Figure 6 presents the testing results based on the traffic video in the highway with
the goal of detecting vehicles from the raw adaptive measurements. Specifically, Fig. 6 (a) presents
the changes in PSNR (dB), detection rate (%) and adaptive 𝐵 (frames) from the measurements against
a constant stream of traffic video frames. Starting from a random 𝐵, RL module adjusts 𝐵 based
on the learned speed and content from the raw measurements. Similarly to Fig. 4, we keep the
original video speed of the first one-third of the video frames, then freeze the video for the middle,
and finally skip every two frames to simulate a fast speed scenario for the last two one-third of
video frames. Under the decision of our proposed RL, 𝐵 has approximately maintained a certain
range at the beginning, then rises to a higher level (𝐵 = 20 in the frozen frames), and then drops
back to a lower level after a period of time (due to the high speed). Once a certain 𝐵 is decided, the
calculated Detection Rate and PSNR will lead to the opposite change of 𝐵, i.e., an increased 𝐵 will
lead to a decrease in the detection rate and PSNR, and vice versa. Consequently, three normalized
measurements with different values of adaptive 𝐵 are shown in Fig. 6 (b-d) with adaptive 𝐵 = 6,
20, 6. We can see that the normalized measurement (c) has the largest adaptive 𝐵 = 20 since its
corresponding original video frames are stationary, while the normalized measurement (d) is blurry
with the smallest adaptive 𝐵 = 6 due to the fast object speed in these video frames.

This video has a total of 565 frames, achieving a mean compression ratio (average 𝐵) of 13.64.
To demonstrate the usability of adapting 𝐵 based on the sensed video data, we compare adaptive
reconstructions (Fig. 6(e)) to those obtained when 𝐵 is fixed at or near its expected value (Fig. 6(f)
at 𝐵=12). Fig. 6(f) shows the reconstructed frames 512∼517 from the measurement in (d) with
non-adaptive (constant) 𝐵. Comparing Figs. 6(e) and 6(f), we notice that adapting 𝐵 provides a
significant (4.3dB) higher reconstruction quality (average all 565 frames PSNR=26.37dB) than fixing
𝐵 even lower than its expected value (average PSNR=22.04dB). Besides, it also improves the average
detection rate from 66.32% to 75.51%. To present the effects of diverse 𝐵 on the object detection
based on measurements, we visualize the vehicle detection results on the raw (original) images and
measurements with different 𝐵 = {6, 8, 10, 12, 15, 20} in the same video clip in Fig. 6(g). It can be
seen that a decent detection rate is obtained at 𝐵 = 6 or 8, while a larger 𝐵 will lead to false alarms.

0

20

40

60

80

100

1 201 401 601 801 1001

Frame

B PSNR (dB) Detection Rate (%)

(a) PSNR and adaptive 𝐵 𝑣𝑠. high-speed frames

(b) Measurement

frame 135~149

(d) Measurement

frame 1010~1015

𝐵 = 15 𝐵 = 20 𝐵 = 6

(c) Measurement

frame 508~527
𝐵 = 10

#743 #745#744
(g) Vehicle detection results on the raw image and measurements with 𝐵 = {6, 8, 10, 12, 15, 20} in the same video

𝐵 = 12 𝐵 = 15 𝐵 = 20𝐵 = 6 𝐵 = 8Raw Image

#1011

(e) Reconstructed frames 1010~1015 with adaptive 𝑩 (current 𝐵 = 6, average all 1060 frames 𝐵 = 15.11), 

average all 1060 frames PSNR = 29.6861dB, average all 1060 frames detection rate = 83.03% 

#1010 #1012 #1013 #1014 #1015

#1010 #1011 #1012 #1013 #1014 #1015

(f) Reconstructed frames 1010~1015 with non-adaptive (constant) 𝑩 = 15, 

average all 1060 frames PSNR = 24.3579dB, average all 1060 frames detection rate = 71.91% 

Fig. 8. Adaptive 𝐵 from based on the detection rate from the measurements directly. (a) Reconstruction PSNR
(dB) and adaptive 𝐵 (frames) (average adaptive 𝐵 = 15.11) from the measurements, all are plotted against frame
number. (b-d) Measurements when there is one moving front vehicle, one stopping front vehicle, and one front
vehicle passing vertically and suddenly inside the scene, adapted 𝐵 = 15, 20, 6, respectively. (e) Reconstructed
frames 1010∼1015 from the measurement in (d with adaptive 𝐵. (f) Reconstructed frames 1010∼1015 with
non-adaptive (constant) 𝐵 = 15. (g) Vehicle detection results on the raw images and measurements with
different 𝐵 = {6, 8, 10, 12, 15, 20} in the same video clip.
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NBA Scene: Following similar steps, Fig. 7 presents the testing results for the publicly available
NBA video. Unlike previous vehicle-related scenes, NBA videos are used to detect basketball players.
Although the speed of human movement may be not as fast as that of vehicles, the corresponding
inference of human-related video frames may not necessarily have better results. Because a single
target (here is the person) occupies fewer pixels compared to vehicles, especially the rapidmovement
of players and mutual occlusion will make the measurements more blurry as in Fig. 7(b)-(d). As
shown in Fig. 7(a), in the latter part, the detection rate has a relatively sharp drop, caused by the
dramatic transition from slow to very rapid changes in adjacent frames of the video clip. From the
selected reconstructed frames in Fig. 7(e)-(f) and detection frames in (g), we can see that adapting
𝐵 leads to a 6.85 dB improvement in PSNR and a 25.89% increase in detection rate. This clearly
verified the efficacy of our proposed RL for adaptive sensing in saving memory and bandwidth (an
average higher 𝐵), power (detection on the raw measurements directly) and potential cost.

Urban Scene: Figure 8 shows the testing result of an urban video clip taken by the front camera
of a driving connected vehicle, with the goal of detecting surrounding vehicles from the raw
adaptive measurements. Differently from the highway video, the captured surrounding vehicles
have smaller relative speed compared with the camera (host vehicle) at the beginning, as the host
and surrounding vehicles are driving along the same road. Then the traffic light at the intersection
turns from green to red, and the relative speed differences between the host and surrounding
vehicles become smaller and smaller until all vehicles become stationary. In the latter part of this
video, the traffic lights become green again and all vehicles speed up aiming to cross the intersection.
Here, we can notice some front vehicles passing perpendicularly with respect to the image plane
with higher speed suddenly, which simulates the driving situation where pedestrians or vehicles
suddenly cross the road and the host vehicle needs a quick emergency response by analyzing captured
measurements to avoid collisions and fatal crashes.
Specifically, Fig. 8 (a) presents the changes in reconstruction PSNR (dB), detection rate (%) and

the related adaptive 𝐵 (frames) from the measurements against a constant stream of traffic video
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Measurement (d): 00222, 00561, 0162 Reconstructed (e): highwayReconImage_00164-00169

(a) PSNR and adaptive 𝐵 𝑣𝑠. high-speed frames

#740
#743 #745#744

(g) Person detection results on the raw image and measurements with 𝐵 = {6, 8, 10, 12, 15, 20} in the same video

𝐵 = 6 𝐵 = 8 𝐵 = 10 𝐵 = 12 𝐵 = 15 𝐵 = 20Raw Image

𝐵 = 12 𝐵 = 20 𝐵 = 6

(c) Measurement

frame 858~877

(d) Measurement

frame 1340~1345

(b) Measurement

frame 110~121

#1340 #1341 #1342 #1343 #1344 #1345

(e) Reconstructed frames 1340~1345 with adaptive 𝑩 (current 𝐵 = 6, average all 1385 frames 𝐵 = 15.56 ), 

average all 1385 frames PSNR = 31.9065dB, average all 1385 frames detection rate = 79.41% 

#1340 #1341 #1342 #1343 #1344 #1345

(f) Reconstructed frames 1340~1345 with non-adaptive (constant) 𝑩 = 15

average all 1385 frames PSNR = 27.6795dB, average all 1385 frames detection rate = 71.29% 

Fig. 9. Adaptive 𝐵 based on the detection rate from the measurements directly. (a) Reconstruction PSNR (dB)
and adaptive 𝐵 (frames) (average adaptive 𝐵 = 15.84) from the measurements, all are plotted against frame
number. (b-d) Measurements when there are one customer entering, no customers entering or leaving, and two
customers leaving the grocery store, adapted 𝐵 = 12, 20, 6, respectively. (e) Reconstructed frames 1340∼1345
from the measurement in (d with adaptive 𝐵. (f) Reconstructed frames 1340∼1345 with non-adaptive (constant)
𝐵 = 10. (g) Person detection results on the raw images and measurements with different 𝐵 = {6, 8, 10, 12, 15, 20}
in the same video clip.
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frames. Starting from a random 𝐵, the RL module adjusts 𝐵 based on learning the speed and content
from the raw measurements. Three measurements with different values of the adaptive 𝐵 are shown
in Fig. 8 (b-d) with adaptive 𝐵 = 15, 20, 6. We can see that the measurement is clear with the largest
adaptive 𝐵 = 20 since its corresponding original video frames are stationary, while measurement
(d) is more blurry with the smallest adaptive 𝐵 = 6 due to the fast speed of the related video frames
and the fast speed of the front vehicle that is passing perpendicularly to the camera. This video
takes a total of 1060 frames to capture, achieving a mean compression ratio (average 𝐵) of 15.11.

To demonstrate the usability of adapting 𝐵 based on the sensed video data, we compare adaptive
reconstructions (Fig. 8(e)) to those obtained when 𝐵 is fixed at or near its expected value (Fig. 8(f)
at 𝐵=15). Fig. 8(f) shows the reconstructed frames 1010∼1015 from the measurement in (d) with
non-adaptive (constant) 𝐵. Comparing Fig. 8(e) and Fig. 8(f), we notice that adapting 𝐵 provides
a significant (5.3dB) higher reconstruction quality (average PSNR of all 1060 frames is equal to
29.69dB) than fixing 𝐵 even lower than its expected value (average PSNR=24.36dB). Besides, it also
improves the average detection rate from 71.91% to 83.03%. To present the effects of diverse 𝐵 on
the object detection based on measurements, we visualize the vehicle detection results on the raw
images and measurements with different 𝐵 = {6, 8, 10, 12, 15, 20} in the same video clip in Fig. 8(g).

Grocery Store Scene: Following similar steps, Fig. 9 presents the testing results based on the
surveillance videos collected from a middle-sized grocery store. As shown in Fig. 9(a), 𝐵 has
approximately maintained a certain range at the beginning, then rises to a higher level (𝐵 = 20 in
the frozen frames), and then drops back to a lower level after a period of time (due to high speed).
Once a certain 𝐵 is decided, the calculated detection rate and PSNR will lead to the opposite change
of 𝐵, i.e., an increased 𝐵 will lead to a decrease in the detection rate and PSNR, and vice versa. From
the exemplar reconstruction frames in Fig. 9(e)-(f) and detection frames in (g), we can see that
our adaptive 𝐵 provides a higher (4.2dB) reconstruction quality than fixing 𝐵 even lower than its
expected value, and it also improves the average detection rate from 71.29% to 79.41%.

3.5 Performance of the Reconstruction
Person Related Videos: Figure 10 presents an adaptive 𝐵 on the NBA video. Specifically, Fig. 10(a)
shows the ground truth of the first four frames as examples. Several reconstructed frames based on
the adaptive 𝐵 are shown in Fig. 10(b). In comparison, the reconstructed images of the NBA video
are more blurry than those in the grocery store video since the movement speed of players is much
higher than the speed of customers.

Vehicle Related Videos: Similarly, Fig. 11 and Fig. 12 implement adaptive 𝐵 on the urban video
and the highway video captured by the front camera of a driving vehicle and the traffic camera,
respectively. Fig. 11(a) and Fig. 12(a) also present the ground truth of the first four frames as
examples. Selected reconstructed frames based on the adaptive 𝐵 are presented in Fig. 11(b) and
Fig. 12(b).

It can be seen from these plots that by using our proposed adaptive video sensing approach, the
reconstructed frames are consistently at a high quality level.

3.6 Additional Considerations
Recovery from Noisy Measurements: We also verified the proposed RL module’s robustness to
noise by investigating the recovery from noisy measurements. Specifically, as shown in Table 2,
when zero-mean Gaussian noise 𝒏 ∼ N(0, 𝜎) is added to the measurements (normalized to [0, 1]),
both the quality of the reconstruction (as measured by PSNR in dB), as well as the detection rates
(DR, 1 is the highest value) are high for different noise levels.
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#1 #2 #3 #4

(a) Ground truth, frames 1~4 shown as examples.

#1 #2 #3 #4

#401 #402 #403 #404

#701 #702 #703 #704

#901 #902

(b) Reconstructed video frames, 16 selected frames shown as examples.

#903 #904

Fig. 10. Selected reconstructed frames (b) based on the adaptive 𝐵 presented in the NBA scene. Frames 1 to 4
in (a) are shown as examples of ground truth.

Table 2. Reconstruction PSNR and detection rate vs. noise 𝜎 .

𝜎

PSNR, DR 𝐵
6 10 15

0 28.73, 0.8543 28.44, 0.8557 28.33, 0.8138
0.005 28.56, 0.8521 28.30, 0.8436 28.19, 0.8018
0.010 28.18, 0.8374 27.99, 0.8162 27.89, 0.7745
0.050 24.70, 0.7534 24.62, 0.7633 24.52, 0.7126
0.100 21.58, 0.7147 21.52, 0.7123 21.44, 0.6849

Inference Speed: In addition, the inference speed of our RL module is high for many time-sensitive
applications. For example, in terms of autonomous driving, when a connected and autonomous
vehicle (CAV) is driving in an urban area at a speed of 40 kilometers per hour, the execution time of
each real-time task should be less than 100 milliseconds [22]. On average, our whole RL module for
inference takes 12 milliseconds per measurement. The inference time of object detection models,
i.e., YOLOv3 and YOLOv3-Tiny, are 42 milliseconds and 16 milliseconds, respectively. Regarding
the E2E-CNN (not necessary), the inference time is 29 milliseconds. The total of all those inference
speeds is much less than 100 milliseconds, which shows actionable insights of employing our work
for real-world CAV applications.
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#1 #2 #3 #4

(a) Ground truth, frames 1~4 shown as examples.

#1 #2 #3 #4

#601 #602 #603 #604

#801 #802 #803 #804

#901 #1902

(b) Reconstructed video frames, 16 selected frames shown as examples.

#903 #904

Fig. 11. Selected reconstructed frames (b) based on the adaptive 𝐵 presented in the urban scene. Frames 1 to
4 in (a) are shown as examples of ground truth.

4 CONCLUSIONS
We introduce reinforcement learning to perform adaptive temporal compressive sensing of video.
The proposed RL algorithm conducts adaptive sensing directly on the raw measurements and thus
saves memory, bandwidth and power on the end-users equipped with SCI cameras. Extensive results
demonstrated the potential of our proposed methods in real life applications of video compressive
sensing. We are working on building an end-to-end system of video SCI and RL to conduct real-time
adaptive sensing experiments and demonstrations using our proposed algorithm.
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