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Abstract—Software-defined vehicles (SDVs) rely on intricate
software systems distributed across multiple electronic control
units (ECUs), making errors inevitable and costly to address
via conventional recalls. Software over-the-air (OTA) update
offers a real-time, cost-efficient solution while enabling software
customization. This paper presents a comprehensive OTA frame-
work for SDVs, utilizing a robotic vehicle and an industry-grade
roadside unit (RSU). The framework leverages Docker to create
isolated environments and Docker Compose to manage rolling
updates, minimizing disruptions and enabling rollbacks. We
also propose RSU- and vehicle-side mechanisms for incremental
update and evaluate the performance of Cellular Vehicle-to-
Everything (C-V2X), including V2X and 5G, alongside Wi-Fi
for OTA transmission. Our study of model weight (ResNet) and
software package (YOLO, UFAST) updates shows that C-V2X
achieves over 30× faster transmission than Wi-Fi. Using 5G
within C-V2X further reduces transmission by up to 2339× com-
pared to V2X, establishing it as a highly effective OTA solution.
Incremental updates enhance efficiency by cutting delays by 2×
versus full updates, with a 32KB chunk size yielding the highest
success rate and shortest times across distances. Incremental
update also reduces transmission by up to 5000× using C-V2X,
enabling package downloads even while the SDV is in motion.

Index Terms—Software-defined Vehicles, OTA Update, C-V2X

I. INTRODUCTION

Software-defined vehicles (SDVs) are characterized by their
reliance on safety-critical software to manage and control
core functionalities, allowing for continuous update and im-
provements throughout their lifecycle [1]. A category within
SDVs, autonomous vehicles rely on over 650 million lines of
code distributed across more than 150 electronic control units
(ECUs). This complexity has led to an increase in software-
related issues and expensive recalls. A prominent example is
Tesla’s recall of 3.6 million vehicles due to crash risks linked
to its driver-assistance software, which resulted in 17 fatalities,
736 crashes, and financial losses of $532 million in the first
quarter of 2023 [2]. Given the associated risks to human
life, software over-the-air (OTA) update has become a critical
solution, enabling real-time error correction, minimizing recall
rates, and facilitating continuous software improvements and
customization throughout the vehicle’s lifecycle.

A. Software OTA Update: Overview and Advancements

Software OTA update offers an efficient and cost-effective
solution for software maintenance in vehicles [3]. Tesla’s
update process involves two main phases: 1) the download
phase and 2) the installation phase [4]. Although driving
is allowed during the download phase, the process may be
disrupted if the vehicle moves beyond the range of a stable
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Fig. 1: A simplified representation of the software OTA update framework
for SDVs, comprising three components: (a) the cloud, (b) the roadside
unit (RSU), and (c) the SDV, demonstrated using a robotic vehicle as an
example. The SDV employs containerization technologies (e.g., Docker and
Docker-compose) integrated with its host device and operating system (Host
Device/OS). Initially, the SDV operates on App/v1, running container 1 (Soft-
ware1:v1) within the Docker environment, alongside other applications such
as Software2:v1. The update process begins on the Host Device by creating the
current software version replica (Replica/v1), enabling rollback if necessary.
The SDV then receives incremental update packets (App/v2) from the RSU
via Cellular-Vehicle-to-Everything (C-V2X) or Wi-Fi communication. Upon
detecting App/v2, Docker Compose triggers a process to stop container 1
running Software1:v1 and launches a new container to deploy Software1:v2.
The retained Replica/v1 provides the rollback mechanism, allowing the system
to revert to App/v1 in the event of an update failure or any other issue.

local network signal, like Wi-Fi, emphasizing it is limited
reliability over distance. This highlights the need for more
reliable communication technologies (detailed in Sec. I-B)

Moreover, while OTA update is widely implemented in
consumer electronics (smartphones, laptops, and IoT devices),
directly transferring traditional methods like the waterfall
model [5] to SDVs proves inadequate. This limitation arises
from the complexity of vehicle hardware, which incorporates
over 150 specialized ECUs [1], as well as the intricacy of
software systems designed to manage distinct tasks with vary-
ing real-time requirements [6], involving real-time tasks (e.g.,
powertrain control) and non-real-time tasks (e.g., infotainment
systems). Additional challenges stem from variable opera-
tional conditions, such as inconsistent connectivity in dynamic



driving scenarios [7]. Therefore, a tailored vehicle-RSU-cloud
framework (Fig.1) is essential for decoupling hardware from
software and facilitating efficient software update (Sec.II).
B. Mainstream Vehicular Communication Mechanism

Efficient communication is essential for seamless software
OTA updates in SDVs. Technologies like LTE/5G/6G, Wi-
Fi, Dedicated Short Range Communication (DSRC), and
Cellular-Vehicle-to-Everything (C-V2X) enable SDVs to in-
teract with other vehicles, RSUs, and the cloud. Despite over
a decade of use, DSRC suffers from low throughput and
limited coverage. In contrast, C-V2X offers higher reliability,
faster data rates, longer range, and lower latency, meeting the
stringent demands of advanced vehicular applications [8].

Building on these advantages, field tests by Ford and Qual-
comm in Ann Arbor and San Diego show that C-V2X outper-
forms DSRC, enhancing connectivity and traffic safety. Con-
sequently, the Federal Communications Commission (FCC)
reallocated DSRC’s frequency band to C-V2X, establishing
it as a leading vehicular communication technology widely
adopted in the U.S., China, and Europe [9]. C-V2X integrates
the V2X network (PC5 interface) with 4G/5G (Uu interface)
at a 5.9GHz frequency, where V2X enables direct, stable
communication without third-party intermediaries, and 4G/5G
supports high-speed data transmission.
C. Unique Challenges and Contributions

Challenge 1: Software-hardware decoupling and mod-
ularity. Premium vehicles often contain over 150 million
lines of code [1], distributed across heterogeneous hardware
platforms developed by various Original Equipment Manu-
facturers (OEMs). Traditionally, the tight coupling between
hardware and software causes significant compatibility issues,
as software update frequently necessitate corresponding hard-
ware modifications. To address them, decoupling hardware
and software offers a solution to enhance modularity, facilitate
seamless third-party integration, and ensure software isolation
to prevent cross-system interference. Moreover, this approach
should aim to support extended software lifecycle management
(spanning approximately 15 years) and facilitate efficient OTA
update for upgrades and customization.

Challenge 2: Network limitations and localized up-
date. Vehicles often operate in areas with limited network
coverage, such as remote regions and underground garages.
Also, channel conflicts can occur due to the allocation of
resources among users of varying types. Therefore, relying
solely on cloud-based OTA update, where SDVs directly
retrieve software from the cloud, may fail to ensure smooth
and efficient software delivery due to network inconsistencies.
Moreover, automotive regulations vary across countries and
states, encompassing factors such as privacy and AI behavior.
For instance, autonomous vehicles must comply with state-
specific guidelines defining how AI-driven systems should
respond in particular situations. Thus, OTA update should be
tailored to local requirements rather than using uniform global
software. Incorporating RSUs to deliver region-specific update
is crucial for efficient and localized software distribution.

Challenge 3: Impact of transmission distance and chunk
size. Unlike stationary devices, SDVs are in constant motion,
causing fluctuating distances between vehicles and RSUs
during OTA update. These variations introduce challenges due
to fluctuating network conditions that can compromise update
reliability. Additionally, selecting an appropriate chunk size for
software transmission poses another difficulty. Smaller chunk
sizes increase transmission frequency and overall transmission
time, whereas larger chunks, although they can theoretically
reduce protocol overhead, may lead to network congestion due
to buffer overflows, increased packet loss, and retransmissions,
ultimately resulting in prolonged transmission time. Thus,
understanding transmission distance and chunk size effects is
essential for optimizing OTA update performance.

Within this study, we design and evaluate a software OTA
update framework (Fig. 1) that operates in two distinct phases:
download and installation. We conduct case studies involving
the transmission of i) model weights from three ResNet
models, which are widely adopted deep convolutional neural
networks frequently used in perception tasks for autonomous
driving and ii) differential packages for YOLO (object detec-
tion) [10] and UFAST (lane detection) [11]. These packages
are delivered using C-V2X technology, which integrates V2X
and 5G capabilities, as well as Wi-Fi. The primary contribu-
tions of this work are outlined as follows:

• To address Challenge 1, we design and implement a soft-
ware OTA update framework using a robotic vehicle and an
industry-grade RSU equipped with an iSmart C-V2X device.
The framework utilizes Docker to encapsulate software in
isolated containers, enabling software-hardware decoupling
and modularization. Docker Compose orchestrates multi-
container applications and manages their lifecycles. Upon
detecting a new version on the host device, the update is
applied to the previous version, and the updated version
replaces the old one via a rolling update, ensuring seamless
transitions. It supports rollback if issues arise.

• To address Challenge 2, we propose two mechanisms for
incremental update. On the RSU side, update is initiated by
either i) identifying and transmitting updated model weights
or ii) generating differential files for software packages,
which encapsulate changes and path information to reduce
package size and optimize transmission efficiency. On the
SDV side, a layered approach is employed, enabling the
host operating system to detect update, apply the required
modifications to the current software version, and seamlessly
deploy the latest version within the Docker environment.

• To address Challenge 3, we analyze the impact of SDV-
RSU distance and chunk size on chunk reception ratio
(CRR). CRR decreases as distance increases, with small
and large chunk sizes showing greater declines compared
to medium-sized chunks. The 32KB chunk size achieves the
highest CRR and faster transmission across distances. Incre-
mental update further reduce transmission time by 5000×
using C-V2X, enhancing the feasibility of downloading
update packages while the SDV is in motion.



II. FRAMEWORK AND MECHANISM OVERVIEW

This section presents a detailed schematic of the proposed
software OTA update framework to address Challenge 1. Ad-
ditionally, two incremental update mechanisms are proposed
for the RSU and vehicle sides to tackle Challenge 2.

A. Framework Description

The development of vehicle software models relies on con-
tinuous data collection, with the cloud aggregating global data
to generate updated software versions distributed to RSUs.
Figure 2 illustrates the framework’s structure and outlines the
steps for updating fixed software while ensuring other software
remains unaffected, consisting of two components.

1) RSU: Once the latest software version is retrieved from
the cloud, the RSU identifies either i) the updated software
model weights or ii) differential packages along with a path
file (as shown in the top-left of Fig.2). This involves comparing
versions to pinpoint changes, including file updates, additions,
or deletions. The RSU then broadcasts these updates using Wi-
Fi or, leveraging iSmart C-V2X devices (SectionII-B), through
V2X and 5G communication channels.

C-V2X communication setup. Ensuring successful transmis-
sion through C-V2X requires the generation of “customized
information messages” for RSU communication. Since the
update package exceeds the single message size limitation,
data serialization is performed to split the file into manageable
segments. These serialized segments are then transmitted using
“customized information messages”. This process consists of
three essential steps, as illustrated in the bottom-left of Fig. 2

(1) Serializing data and embedding messages. Complex
data types, such as model weights and software packages, are
serialized into a byte-stream format to align with the C-V2X

protocol. The serialized data is embedded into “customized
information messages,” ensuring compliance and enabling
efficient data transfer with minimal packet loss.

(2) Implementing Stop-wait protocol. To address through-
put asymmetry in C-V2X communication, where sending
exceeds receiving throughput [12], we implement a stop-wait
protocol with a 0.1-second delay. This method follows SAE
J2735 Traveler Information Message (TIM) standard [13],
reducing retransmissions and ensuring reliable flow. The RSU
broadcasts TIMs containing real-time alerts such as traffic
updates and road sign information to nearby vehicles.

(3) Compile source code for message transmission. Due
to the absence of external libraries and dependencies on the
RSU device, “customized information messages” are compiled
into a 64-bit executable file for deployment on the RSU.

2) Vehicle: To decouple hardware and software, we deploy
Docker and Docker Compose on the vehicle’s computing
unit (NVIDIA Jetson NX) running Ubuntu 20.04 as the host
operating system. Given the Jetson architecture, JetPack is
utilized alongside NVIDIA’s L4T-ML (Linux for Tegra -
Machine Learning) package, a container image designed to
simplify the deployment of machine learning models. This
setup supports various vehicle applications, including object
detection and lane detection, while ensuring flexibility and
modularity through containerization.

Docker and Docker Compose [14] are used (bottom-right of
Fig. 2) to avoid dependency conflicts and ensure that updates
to specific vehicle software do not affect other applications.
Docker provides isolated environments for running software in
containers built from layered images, encapsulating required
dependencies and configurations to prevent conflicts. Modify-
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Fig. 2: The software OTA update framework integrates the RSU (left) and the SDV (right), utilizing Docker alongside the host device and operating
system (Host Device/OS) to facilitate efficient incremental update. The process is divided into three main stages: pre-update configuration, update process,
and container update. Before the update begins, the host device operates on App/v1 and runs associated software containers, such as YOLOv5 in Container
1 and UFASTv1 in Container 3, all managed through Docker Compose to ensure consistent and stable operation. The update process starts with the RSU
preparing the necessary data, including model weights, differential packages, and file paths for App/v2. These updates are serialized, embedded into messages,
and transmitted to the SDV via C-V2X or Wi-Fi using a stop-wait protocol. On the SDV side, the host device duplicates the current version (App/v1) into
Replica/v1 to enable rollback if needed. The differential package is then applied to transition App/v1 to App/v2. Once the new version (App/v2) is detected,
the SDV updates its Docker configuration by rewriting the Dockerfile and rephrasing the YAML file for Docker Compose. Docker Compose deactivates the
container running YOLOv5 (Software1:v1) and deploys a new container to run YOLOv7 (Software1:v2). This process ensures seamless integration of the
updated software while preserving rollback capabilities to address potential issues.



ing the Dockerfile triggers Docker to rebuild only the affected
containers, ensuring updates are applied seamlessly and inde-
pendently without impacting other software functionalities.

Docker Compose simplifies the management of multiple
containers by coordinating their configurations and execution
through a YAML file. With the addition of automation scripts,
containers can be automatically rebuilt when Dockerfiles are
updated, streamlining the process of deploying the latest
software images for rolling update. Furthermore, in the event
of issues with an update, the system can roll back to a previous
software version (i.e., a stored replica) on the host device,
ensuring stability and reliability throughout the update process.

B. Hardware Platform Description

Figure 3 visualizes the essential hardware components of
our OTA update framework, featuring the RSU with the Mocar
C-V2X device on the left and the robotic vehicle on the right.
iSmart C-V2X Device. This device offers advanced mobile
communication capabilities, operating with a bandwidth of
10MHz or 20MHz and achieving communication latency be-
low 20ms. Equipped with six antennas (V2X1-4 and 5G1-2),
it supports both V2X and 5G networks (Sec I).
Robotic Vehicle. The robotic vehicle is powered by an
NVIDIA Jetson Orin NX as its onboard computing unit,
featuring 16GB of memory. This edge device from NVIDIA’s
Jetson series offers up to 100 Tera Operations Per Second
(TOPS) of AI performance, making it highly suitable for
advanced computing tasks.
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Fig. 3: The hardware overview of the RSU and the robotic vehicle.
C. Incremental Update Mechanisms on the RSU and Vehicle

To address Challenge 2, we introduce incremental update
mechanisms for both the RSU and the vehicle. As a case
study, we explore the transmission of i) model weights from
three ResNet models and ii) differential software packages
for YOLO (object detection) [10] and UFAST (lane detection)
[11]. The RSU is responsible for retrieving these data types
and transmitting them to the SDV, while the vehicle mecha-
nism focuses on successfully executing the received differen-
tial packages. These mechanisms are detailed as follows.

1) Incremental Update Mechanism on the RSU: For model
weights, the RSU retrieves the latest locally stored weights,
ready for deployment. For software packages, the RSU gener-
ates differential files encapsulating only the changes between
the current and updated software versions. Accompanying

these files is a path file specifying modification paths and
providing instructions for transitioning from the old version
to the new one. This path file guides the SDV’s host OS
in applying the differential files and updating the previous
version. Both differential files and the path file are transmitted
via the broadcast, ensuring efficient and reliable update.

2) Incremental Update Mechanism on the SDV: For model
weights, the process begins with monitoring a designated
directory on the host system for changes, facilitated by a script
that detects updates and triggers appropriate actions when new
weights are added. The docker-compose.yml file is configured
to mount this directory as a volume, ensuring the container can
access the updated files. Inside the container, the application
logic is programmed to dynamically load the new weights at
runtime. Once the monitoring script detects updated weights, it
restarts the container to integrate the latest update seamlessly.
Finally, the process is validated by placing a new weights
file in the monitored directory and verifying that the script
detects the update, the container restarts successfully, and the
application correctly loads the updated weights.

For software packages, the host device duplicates the current
version (App/v1) as Replica/v1 to ensure rollback capabil-
ity if needed. The differential file, containing only essential
changes, is applied to App/v1 to update it to the new version
(App/v2). After the update, the SDV OS updates the Dockerfile
and modifies the YAML configuration for Docker Compose.
Docker Compose then deactivates the container running the
old software version (e.g., Software1:v1) and launches a new
container for the updated version (e.g., Software1:v2).

III. OTA UPDATE RESULTS IN WI-FI

To address Challenge 3, this section examines the impact of
SDV-RSU distance and chunk size on the one-time transmis-
sion success rate, utilizing the widely adopted Wi-Fi protocol,
which is commonly used for building local networks 1.
A. Evaluation Metrics

We define the chunk reception ratio (CRR) as an evaluation
metric to assess the reliability of data transfers. It is calculated
using the formula: CRR = Nreceived

Ntotal
× 100% where Nreceived

represents the number of chunks successfully received, and
Ntotal denotes the total number of chunks transmitted.
B. Quantitative Analysis of Distance and Chunk Size

The ResNet-18 model weights (45MB) are broadcasted
15 times at distances of 5m, 10m, and 15m to evaluate
performance. Four chunk sizes, 8KB, 16KB, 32KB, and 65KB,
are tested. The 65KB chunk size is chosen as the maximum,
aligning with the User Datagram Protocol (UDP) standard,
which defines 65KB as the optimal upper limit for efficient
data transmission [15]. Our design leverages “customized
information messages” based on TIM, which primarily relies
on broadcast communication without application-layer retrans-
mission mechanisms [16]. Consequently, UDP is selected to
meet these non-reliable transmission requirements, ensuring
lightweight and efficient data delivery. This choice aligns with

1https://www.geeksforgeeks.org/ieee-802-11-architecture/



our later use of C-V2X for file transmission, where the priority
is on low-latency and efficient broadcast communication.

1) Impacts of Transmission Distance: Figure 4(a) shows
the CRR for transmitting ResNet-18 model weights as the
distance increases, using different chunk sizes. While all chunk
sizes achieve a higher CRR at 5 meters, the CRR drops
significantly at 10 and further at 15 meters. For instance, at
10 meters, the 16KB chunk size achieves a CRR of 77%,
lower than the 94% with 32KB. At 15 meters, the CRR for
16KB drops to 59%, while 32KB retains better performance
at 75%, showing a sharper decline over longer distances.
These OTA transmission limitations stem from 5GHz Wi-Fi
characteristics: i) susceptibility to signal instability causing
disconnections and ii) its design prioritizes higher speeds over
an extended range (IEEE 802.11 standard [17]).

Figure. 4(a) depicts a decline in CRR as the transmission
distance increases, with the effect being more pronounced
for smaller chunk sizes (e.g., 8KB and 16KB) and the
largest chunk size (65KB) compared to the medium chunk
size (32KB). Notably, using smaller chunks does not ensure
higher CRR. This is because i) smaller chunks necessitate
more transmissions to complete the file transfer, and ii) the
additional protocol overhead from extra headers offsets the
reduced data size per packet, leading to a lower CRR.

Recall that we conduct fifteen transmissions to transfer the
complete ResNet-18 model weights across various distances
using different chunk sizes. The average total transmission
time for four chunk sizes over Wi-Fi is shown in Fig. 4(b).
To mitigate the impact of outliers, the transmission time is
calculated using the Gaussian mean. For a given chunk size,

the transmission time nearly doubles as the distance increases
from 5 to 10 meters. While larger chunk sizes reduce transmis-
sion time at shorter distances, their advantage diminishes over
longer distances due to packet loss and increased overhead.

As shown in Fig.4(a) and Fig.4(b), the 32KB chunk size
achieves the highest reliability (highest CRR) across vari-
ous distances while maintaining relatively short transmission
times. Medium-sized chunks carry more data per packet,
reducing protocol overhead. In contrast, larger chunks are
more prone to IP fragmentation, increasing the risk of packet
loss and retransmission, as fragmented packets are more likely
to encounter transmission issues. Additionally, larger chunk
sizes place a greater demand on buffer space and memory,
leading to higher system load and reduced success rates.

2) Impacts of Chunk Size: Building on the 100% CRR
observed at a 5-meter distance (Fig.4(a)), we analyze the
chunk sizes impact on the total transmission time for ResNet-
18, ResNet-50, and ResNet-101 at this distance, minimizing
external influences. ResNet-50 (94MB) is about twice the size
of ResNet-18 (45MB), while ResNet-101 (174MB) is roughly
four times larger. Figure5(a) illustrates the total transmission
times for the three models using four chunk sizes: 8KB, 16KB,
32KB, and 65KB. The results show that increasing the chunk
size reduces the total transmission time across all models, with
ResNet-101 requiring the longest time, followed by ResNet-
50 and ResNet-18. Doubling the chunk size nearly halves
the transmission time, with the most significant improvements
seen at smaller chunk sizes, particularly 8KB.

Figure 5(b) shows the transmission time ratios of ResNet-50
and ResNet-101 relative to ResNet-18 across chunk sizes at a
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5-meter distance over Wi-Fi. ResNet-101 consistently exhibits
the highest transmission time ratio, followed by ResNet-50.
At the 8KB chunk size, ResNet-50’s ratio reaches 6.0, far
exceeding its file size ratio of 2.1 relative to ResNet-18,
indicating inefficiency with smaller chunks. As chunk sizes
increase, the ratios decrease and align more closely with
the actual file size ratio, improving transfer efficiency. A
similar trend is observed for ResNet-101, demonstrating that
at shorter distances with a high one-time transmission success
rate, larger chunk sizes enable more efficient transfers and
transmission times proportional to file sizes.

IV. OTA UPDATE RESULTS IN C-V2X

Although 5GHz Wi-Fi faces challenges over longer trans-
mission distances, C-V2X provides wide-area communication
capabilities with an approximate range of 600 meters [18],
[19], presenting a viable alternative. This motivates us to
conduct further testing using the C-V2X protocol.

A. Experiment Result in C-V2X

First, we measure total transmission time and compare C-
V2X with Wi-Fi. Then, we analyze the transmission time
differences between full and incremental software update.

1) Comparison of C-V2X and Wi-Fi: Table I presents the
transmission performance of model weights using C-V2X
(V2X and 5G) and Wi-Fi. For Wi-Fi, only the shortest
transmission times from Fig.4(b) are included. C-V2X (5G)
demonstrates significant advantages over Wi-Fi, achieving up
to 9× faster transmission for ResNet-18, 18× for ResNet-50,
and 30× for ResNet-101. As C-V2X integrates both V2X and
5G, their performance for transmitting large files is further
analyzed. A comparison in TableI reveals that 5G reduces
the transmission time for ResNet-50 from 158 minutes to
just 5 seconds. For larger models, 5G outperforms V2X with
improvements of 1236× for ResNet-18, 1972× for ResNet-50,
and 2339× for ResNet-101.
Table I: Total transmission times for three model weights via
V2X, 5G, and Wi-Fi communication.

Model Name Communication Transmission Time
ResNet-18 V2X 75min
ResNet-18 5G 3.64s
ResNet-18 Wi-Fi 33.31s

ResNet-50 V2X 157.83min
ResNet-50 5G 4.80s
ResNet-50 Wi-Fi 87.89s

ResNet-101 V2X 290.9min
ResNet-101 5G 7.46s
ResNet-101 Wi-Fi 220.26s

2) Comparison of Incremental and Full Update: Next, we
evaluate the proposed incremental update strategies against full
update in terms of download and execution times, following
the two-phase process of download and installation (introduced
in Sec. I). Download time refers to the transmission time
from the RSU to the vehicle, while execution time denotes
the duration required to apply the differential package, which
occurs during the software update on the SDV. Table II

demonstrates the entire OTA update pipeline delay (download
and execution time).

Table II: The package size, transmission time, and execution time for
both full and incremental update on YOLO and UFAST models are
analyzed. A value of 0 signifies the absence of execution overhead,
as full update rely on replacing the entire package.

Model Name Update Type Package Size Download Time Execution Time
YOLO Full 41.5MB 32.70s 0

v5 to v7 Incremental 776.5KB 0.63ms 15.08s

UFAST Full 25.5MB 21.97s 0
v1 to v2 Incremental 70.9KB 0.42ms 11.47s

The full update requires considerably longer download times
due to their larger package sizes. For example, downloading
the full YOLO package takes 32.70 seconds, while UFAST
requires 21.97 seconds. In contrast, incremental update is sig-
nificantly more efficient, with YOLO’s download time reduced
to just 0.63 milliseconds and UFAST’s to 0.42 milliseconds. In
terms of execution time, the SDV system takes 15.08 seconds
to apply the YOLO (v5 to v7) update and 11.47 seconds for
the UFAST (v1 to v2) update. While full update eliminates
execution time overhead by replacing the entire package, they
still introduce delays that are twice as long as those observed
with incremental update. Moreover, incremental update dras-
tically reduces package size: for UFAST, the full package is
25.5MB with a 21.97-second transmission time, whereas the
differential package is only 70.9KB.

V. OBSERVATION AND DISCUSSION

⋆ Observation 1: C-V2X (5G) emerges as an effective solu-
tion for facilitating software OTA update while enabling real-
time task execution during the update process.

This observation is validated by Table I. Compared to V2X
and Wi-Fi, 5G delivers exceptionally high bandwidth and peak
data rates, reaching several Gbps through cellular networks,
making it highly efficient for transferring large files.

Although V2X cannot achieve the same large file transmis-
sion performance as 5G due to protocol constraints, it excels
in broadcasting essential road information, such as traffic
light states and vehicle speeds, through direct communication
among vehicles, infrastructure, and pedestrians. This makes
V2X effective for cooperative control in high-speed, open
environments, significantly improving driving safety.

⋆ Observation 2: The incremental update drastically reduces
package size and download time compared to the full update,
increasing the feasibility of downloading update packages
while the SDV is in motion.

Discussion: Table II confirm this observation. The full
update requires significantly longer download times due to
their larger package sizes. In contrast, the incremental update
is far more efficient, reducing transmission times from seconds
to milliseconds. Although incremental update introduces exe-
cution overhead on the SDV to apply the differential changes,
this overhead occurs during the installation phase rather than
the download phase. Since the installation phase can be
performed while the SDV is safely parked in a secure location,



this additional time is less critical. Even when considering both
download and execution times, the incremental update remains
significantly faster than the full update, which still takes more
than twice as long due to their larger package sizes.
⋆ Observation 3: The medium chunk size (32KB) achieves
the highest CRR compared to smaller sizes (8KB and 16KB)
and the largest size tested (65KB), across varying transmission
distances. It also results in shorter transmission times.

Discussion: This observation is supported by Fig. 4 (a)
and Fig. 4 (b). Compared to smaller chunks, medium chunks
transmit more data per packet, reducing protocol overhead
caused by additional header information. On the other hand,
while larger chunks can carry even more data in a single
transmission, they are more prone to IP fragmentation. This
occurs when larger packets exceed the Maximum Transmission
Unit (MTU) of the network path, necessitating fragmentation.
Fragmented packets have a higher risk of loss, and losing any
fragment requires retransmission of the entire packet, signif-
icantly degrading network performance. Additionally, larger
chunks consume more system buffers and memory, increasing
system load and lowering transmission success rates.
⋆ Observation 4: Smaller chunk sizes cannot ensure a higher
CRR. Under stable network conditions at shorter distances,
larger chunk sizes may be more efficient for OTA update.

Discussion: Figures 4(a)-(b) and 5(a)-(b) support this ob-
servation. Smaller chunk sizes increase the total number of
packets, each carrying additional protocol metadata (e.g.,
headers and checksums) to ensure data integrity. This metadata
introduces overhead, which grows as chunk sizes shrink,
reducing bandwidth efficiency. Additionally, a higher packet
count raises the likelihood of packet loss in unstable network
conditions, further impacting efficiency. In contrast, larger
chunk sizes minimize protocol overhead and streamline data
transfer, offering greater efficiency under stable conditions.

VI. CONCLUSION

This study introduces a software OTA update framework
utilizing robotic vehicles and industry-grade RSUs. We pro-
pose mechanisms for implementing the incremental update on
both the RSU and vehicle sides, facilitating efficient the SDV
software update. The framework’s performance is evaluated
using C-V2X (V2X and 5G) and Wi-Fi for OTA transmissions.
By focusing on ResNet model weights and software packages
(YOLO and UFAST series), our findings identify a 32KB
chunk size as optimal for transmission. Moreover, the results
demonstrate that C-V2X (5G) significantly outperforms both
Wi-Fi and C-V2X (V2X), emphasizing its suitability for
OTA update. The framework further supports the incremental
update, cutting download times by over 5000× compared to
the full update, significantly reducing OTA pipeline delays.
In future work, we plan to extend our study to explore OTA
update strategies involving one RSU serving multiple vehicles.
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