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Abstract—The aviation industry heavily relies on effective
maintenance strategies to ensure operational safety, but rou-
tine inspections under conventional preventive maintenance ap-
proaches often lead to high costs, delays, and cancellations.
Predictive maintenance offers a transformative alternative by
forecasting equipment failures, optimizing schedules, and enhanc-
ing safety. In this study, we propose and evaluate three novel
variants of the Gradient-Boosting Regression Tree algorithm for
the prediction of aircraft turbofan engine’s Remaining Useful
Life (RUL). Our research investigates how feature engineering,
operating conditions, and fault modes affect predictive perfor-
mance across diverse engine operating scenarios. We conduct a
comprehensive comparative analysis of our proposed algorithms
against seven state-of-the-art methods, including both traditional
machine learning, deep learning, and hybrid approaches. Ad-
ditionally, we introduce the Margin-Adjusted Reliability Score
(MARS), a novel benchmarking metric that incorporates both
prediction accuracy and timeliness, addressing gaps in existing
evaluation methods. By providing insights into algorithm inter-
pretability and performance, this work contributes to the devel-
opment of efficient, transparent, and industry-relevant predictive
maintenance solutions, advancing the state of fault prognostic
systems in aviation. The datasets, tools, and algorithms from this
work will be open-sourced to support community research.

Index Terms—Aircraft, turbofan engine, predictive mainte-
nance, edge computing, fault forecasting, time series data

I. INTRODUCTION

Commercial aviation is essential to global mobility. Be-
tween 1970 and 2010, passenger numbers increased more
than eightfold [1]. Today, the Federal Aviation Administration
(FAA)’s Air Traffic Organization manages over 45,000 flights
daily, transporting 2.9 million passengers across 29 million
square miles of airspace [2]. These operations rely heavily on
efficient maintenance, repair, and overhaul (MRO) processes
to ensure safety, reliability, and cost-effectiveness [3].

Although maintenance-related aircraft failures are rare, even
minor lapses can lead to devastating consequences. Recent
incidents, such as the Jeju Air crash in Korea, which resulted
in 179 fatalities and two injuries, underscore the critical im-
portance of robust maintenance practices in ensuring aviation
safety and reliability [4]. Economic pressures and fluctuating
passenger demand further compel airlines to continually refine
their MRO strategies to enhance safety, address operational
demands, and control costs. This work aims to address these
challenges by enabling accurate and timely prognostics for
commercial aviation, as presented in Fig. 1.
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Fig. 1. An overview of our experimental procedures for turbofan engine fault
prognostics. We address three key research questions (RQs): performance
analysis of our proposed method (top-left), comparative performance evalu-
ation (top-right), and proposal of a new performance metric (bottom-right).
RQ1 investigates how the performance of our proposed RUL prediction algo-
rithm changes with varying complexities of operating scenarios as well as with
different feature engineering techniques. RQ2 benchmarks the performance of
our proposed method against other methods in similar studies. RQ3 examines
existing performance metrics and proposes a new metric tailored to better
address the specific challenges of the turbofan engine prognostics task.

A. Aircraft Turbofan Engines

Aircraft turbofan engines are a cornerstone of modern com-
mercial aviation, delivering high thrust while maintaining fuel
efficiency by combining elements of turbojet and turboprop
designs [5]. Turbojets generate thrust by compressing air,
mixing it with fuel, and igniting the mixture to produce high-
velocity exhaust gases [6]. While effective at high speeds,
they lack fuel efficiency at lower subsonic speeds. In contrast,
turboprops, which combine a jet engine with a propeller
powered by the turbine, excel in fuel efficiency at speeds below
500 miles per hour [7].

To address design limitations at high subsonic speeds,
turbofan engines split incoming air into two streams: one
directed into the core for thrust and the other bypassing the
core to reduce noise and improve fuel efficiency [8], as shown
in Fig. 2. The bypass ratio, the proportion of air bypassing the
core, is key to their design. Modern turbofans, like the geared
turbofan (GTF), achieve bypass ratios up to 12:1, balancing
fuel efficiency and performance across various speeds. This
blend of engineering and practicality makes them essential for



Fig. 2. A simplified diagram of an aircraft turbofan engine. The top
section illustrates the locations of its five rotating components: the fan,
Low-Pressure Compressor (LPC), High-Pressure Compressor (HPC), High-
Pressure Turbine (HPT), and Low-Pressure Turbine (LPT). It also marks
the positions of the combustor and nozzle, as well as the metrics “fan spool
speed” (N1) and “core spool speed” (N2). The bottom section provides a
visual representation of the engine’s operational process [9].

cost-effective, environmentally sustainable aviation.

B. Aircraft Turbofan Engine Maintenance

To ensure safety in the high-stakes aircraft industry, where
errors are minimally tolerated, regularly scheduled engine
maintenance has long been the standard practice. However,
this traditional approach is costly, as maintenance is performed
regardless of the engine’s actual condition. While preventative
maintenance aims to reduce the risk of engine failure, it can
inadvertently introduce new mechanical issues during routine
procedures, resulting in expensive disruptions. For instance,
a single flight cancellation can cost an airline approximately
$140,000, while each hour of delay incurs expenses of about
$17,000 [10]. These financial pressures underscore the press-
ing need for more efficient maintenance strategies.

Advancements in edge computing [11], the Industrial In-
ternet of Things (IIoT) [12], and Prognostics and Health
Management (PHM) [13] have paved the way for predictive
maintenance strategies, which enhance engine uptime, cost
efficiency, and safety. Predictive maintenance relies on con-
tinuous monitoring of engine parameters, such as temperature
and vibration, using advanced sensors. Combined with off-
board operational data, these parameters are analyzed by
machine learning models to detect anomalies and assess degra-
dation levels [14]. This process enables optimized maintenance
scheduling. For example, predictive maintenance strategies
have allowed the Boeing 787 to reduce flight delays and
cancellations by 30% and unscheduled engine removals by
20%, significantly improving operational efficiency [15].

Despite its promise, implementing predictive maintenance
for aircraft engines poses several challenges. Data ownership

disputes between engine manufacturers and commercial op-
erators, stringent regulatory requirements by the FAA, and
the technical limitations of predictive models all complicate
adoption [15]. Additionally, effective machine learning mod-
els for prognostics require failure data to ensure predictive
accuracy and reliability. However, obtaining such data would
require allowing engines to fail, a prospect incompatible with
aviation’s stringent safety standards [16], [17].

To address the scarcity of real-world failure data, re-
searchers have developed sophisticated simulation tools to
generate synthetic datasets for developing and testing prog-
nostic models. Initiatives such as the PHM Data Challenge
competitions1 and NASA’s Prognostics Data Repository2 have
significantly advanced PHM research by providing realistic
simulation datasets and benchmarks for evaluating these de-
veloped algorithms.

C. Datasets and the Need for Standardized Evaluation Metrics

The National Aeronautics and Space Administration
(NASA) Prognostics Data Repository offers datasets for re-
searchers to compare and evaluate prognostic algorithms.
Among these are datasets from the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) tool [9], which
models turbofan engine operations and introduces faults with
varying degradation levels. The first C-MAPSS dataset was
followed by an extended release of four sub-datasets with vary-
ing complexities [18]. These datasets have become essential
benchmarks for prognostic algorithm research.

Despite the widespread use of these datasets, comparing
results across studies remains difficult due to unclear result
computation methods, leading to inconsistencies. The need for
a standardized evaluation metric to assess these approaches is
increasingly critical.

D. Research Questions and Contributions

Research Questions. Motivated by the challenges outlined
above, this study utilizes four sub-datasets from the Turbofan
Engine Degradation Simulation dataset, which simulates run-
to-failure trajectories for a small fleet of turbofan engines
under realistic flight conditions.

To provide clear insights into decision-making processes for
engine maintenance and foster trust in safety-critical aviation
domains, this study developed three variants of Gradient-
Boosting Regression Trees (GBRT) as tree-based algorithms
instead of relying on computation-intensive deep learning
methods. Tree-based methods offer interpretability, compu-
tational efficiency, and robustness on small to medium-sized
datasets. In contrast, deep learning models often require ex-
tensive tuning and lack transparency. Previous studies in time-
series data prediction have shown that, with advanced feature
engineering, tree-based algorithms can achieve competitive
accuracy while avoiding the complexity and resource demands

1https://data.phmsociety.org/
2https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-

health/pcoe/pcoe-data-set-repository/



of deep learning [19], making them a practical and accessible
baseline for this study.

To be concrete, our research addresses three primary re-
search questions (RQs), as shown in Fig. 1:

(i) How effectively can a tree-based prognostics algorithm
predict the Remaining Useful Life (RUL) of simulated tur-
bofan engines, considering varying complexities of engine
operating conditions and the influence of feature engineering
techniques (RQ1)?

(ii) How does the tree-based algorithm’s accuracy compare
to existing methods, and how does this performance change
when accounting for prediction timeliness (RQ2)?

(iii) Can we design an improved performance metric for
RUL prediction models that incorporates both accuracy and
timeliness, provides clear and distinct evaluations of these
factors, and enables standardized comparisons across datasets
and solutions (RQ3)?
Contributions of This Work. From a technical perspective,
we develop three variants of the GBRT algorithm for predict-
ing the Remaining Useful Life (RUL) of turbofan engines.
We evaluate its performance, compare it against seven state-
of-the-art (SOTA) methods, including both traditional machine
learning and deep learning approaches, recently published or
widely used for time-series data prediction, and introduce a
new performance benchmarking metric. The datasets, tools,
and algorithms developed in this work will be made open-
source to support and advance related research within the
community. Our specific contributions are as follows:

• We propose and develop accurate and efficient GBRT-
based prognostic solutions to estimate the RUL of turbo-
fan engines (Section IV).

• For RQ1, we evaluate how the algorithm’s prediction
accuracy and timeliness are influenced by different fea-
ture dimensionalities applied to the data, engine operating
conditions, and degradation fault modes. We identify
strategies to optimize the predictive performance with
these factors in mind (Section IV).

• For RQ2, we compare the prediction accuracy and timeli-
ness of our method with other published solutions, includ-
ing ConvGAT [20], FCDAE-CNN-LSTM [21], Support
Vector Machine (SVM) [22], Multi-Layer Perceptron
(MLP) [22], Deep Belief Network (DBN) [22], Long
Short-Term Memory (LSTM) [23], and Deep Convolu-
tional Neural Network (DCNN) [24] (Section V).

• For RQ3, we propose a novel performance metric that
transparently measures both accuracy and timeliness of
RUL predictions. This metric provides a clear and stan-
dardized way to compare different methods. (Section VI).

• We provide an extensive discussion of our experimental
observations for RQ1, RQ2, and RQ3, offering in-depth
explanations, contributing to the broader knowledge base
for enhanced aircraft safety (Sec. VII).

The rest of this paper is organized as follows: Sec. II
reviews related work. The experiment datasets and hardware
configuration are detailed in Sec. III. Extensive experimental

results of RQ1, RQ2, and RQ3 are shown in Sec. IV, Sec. V,
and Sec VI, respectively. We present our discussion points in
Sec. VII, and Sec. VIII concludes the entire paper.

II. RELATED WORK

A. Remaining Useful Life forecasting

1) Importance of RUL Forecasting in PHM: RUL fore-
casting is an important step within the PHM process. RUL
prediction forecasts the time remaining until a component or
system reaches the end of its functional lifespan [25]–[27].
Having the knowledge of a system’s RUL value allows for
proactive maintenance planning, reduces the risk of equipment
failures, minimizes maintenance and supply chain costs, and
optimizes operational schedules.

2) General Solution Types for RUL Prediction: 1 Model-
Based vs. Data-Driven Methods. Approaches to RUL fore-
casting are categorized as model-based or data-driven methods,
though there are many that include characteristics of both.
Model-based approaches rely on physical laws or analytical
models of the system under study. Data-driven models use
machine learning or statistical techniques to learn patterns
of system or component degradation, often from time-series
sensor data, which vary in computational complexity and
accuracy depending on the quality and quantity of the data
required for the task domain [28].

2 Simulation-Based Data for RUL Prediction. Because
producing run-to-failure data is limited in a practical setting,
simulation-produced datasets are often used to inform the
development of data-driven RUL forecasting methods. These
datasets simulate degradation scenarios for a specific physical
system or component. Some examples include the degradation
of bearings, lithium-ion batteries, composite materials, and
milling machines [29]. Data usually includes detailed sensor
readings over time that portray failure trajectories for these
systems so that data-driven models can be trained to predict
the degradation level of the system. One example of a recent
solution is [30], which predicts the RUL of rolling bearings
by integrating feature extraction through Synchrosqueezing
Wavelet Transform (SSWT) and Random Projection (RP) with
a deep learning architecture that combines Residual Networks
(ResNet) and temporal attention layers. Another example is
[31], which predicts the RUL of lithium ion batteries using a
GM-PFF model that combines grey modeling with a particle
flow filter.

3) Representative RUL Prediction Methods: The challenge
of predicting the RUL of turbofan engines has been a popular
topic of study since the release of the C-MAPSS simulated
datasets. There are several categories of solutions identified in
this literature [32], illustrated below.

1 Health index-based methods. Health index-based mod-
els map sensor measurements to a health index for each
training unit, which is then linked to RUL. Recent work in
this category has focused on detecting system degradation
using deep learning models. For example, [33] combines deep
belief networks with self-organizing map neural networks to



build a health index that captures correlations between multi-
component systems, significantly improving RUL prediction.

2 Similarity-based matching. Similarity-based matching
methods create a library of system instances with known
failure times. For a test instance, similarity with library in-
stances is evaluated to estimate and aggregate RUL. Recent
advancements include integrating autoencoder architectures
and failure mode-specific metrics to enhance RUL prediction
accuracy. For example, [34] uses a classifier to identify the
failure mode and guide RUL prediction.

3 Neural network-based approaches. Perhaps the most
prominent category, especially as of recently, are neural
network-based methods. These methods transform engine tra-
jectory data into a multidimensional feature space, using
corresponding RUL values to label feature vectors. Supervised
learning is then applied to map feature vectors to RUL.
Recent work in this category includes a multi-dimensional
attention mechanism combined with a feature-sequence di-
mensional convolution network, which captures interactions in
feature dimensions and temporal sequences, improving RUL
prediction accuracy on datasets like NASA’s turbofan engine
data and XJTU-SY [35]. Hybrid deep learning models, such
as Convolutional Long Short-Term Memory (CNN-LSTM)
[36] [27], and FCDAE-CNN-LSTM [21], have also gained
popularity.

4 Emerging Hybrid Solutions. The most recent solutions,
however, combine one or more of these categories to address
each different parts of the problem. For instance, [37] inte-
grates Temporal Convolutional Networks (TCNs) for temporal
feature extraction with a Bi-LSTM to learn salient temporal
patterns. [38] uses a parallel prognostic network to discern
degradation features for RUL prediction, and also incorporates
Monte Carlo dropout to produce a probabilistic prediction,
addressing predictive uncertainty within the solution. [39] uses
feature squeeze excitation (FSE) to assign weights to sensors,
discerns degradation information using LSTM augmented with
a softmax temporal permutation selecting (STPS) mechanism,
and employs fully connected networks (FCNs) to map features
to RUL values.

B. Research Gaps in Previous Work

1) Lack of Interpretability: Despite significant advance-
ments in the field, critical gaps and challenges persist. One
major issue is the lack of interpretability in high-performing
RUL prediction models. Many models are highly complex,
resulting in increased computational demands and reduced
transparency, both of which are critical for safety-critical
applications. Black-box models, while often accurate, fail to
provide the insights needed for integration into modern PHM
systems, which aim to combine diagnostics, controls, and
multi-objective optimization in real time [40]. Interpretability
and transparency are essential for integrating RUL forecasting
into broader PHM frameworks, enabling reliable maintenance
recommendations, improved mission readiness, and reduced
operating costs.

2) Computational Complexity: Another significant chal-
lenge is computational complexity. Many advanced methods,
especially hybrid neural network models, rely on computation-
ally intensive feature extraction and overall high processing
demands. These requirements often make such models im-
practical for real-time or resource-constrained environments
[25]. While these methods achieve impressive accuracy, their
computational overhead makes them unsuitable for applica-
tions that require a balance between accuracy, efficiency, and
transparency.

3) Inadequate Evaluation Metrics: Evaluation and com-
parison of RUL prediction methods also face considerable
gaps. Widely used metrics such as Root Mean Squared Error
((Eq. 3) and the PHM Score (Eq. 2) fail to provide a com-
prehensive assessment of model performance. While accuracy
is an important measure, it is insufficient for selecting PHM
models that must perform well across multiple dimensions.
Prognostic Performance Indicators (PPIs), which evaluate var-
ious aspects of prognostic approaches, need to be defined to
establish a structured evaluation framework [41]. Although the
2008 PHM Challenge metric [18] offers additional insights
beyond accuracy, it still falls short of enabling standardized
and thorough comparisons across methods.

III. TOOL AND DATA OVERVIEW

A. Experiment Tools

C-MAPSS is a MATLAB and Simulink-based tool that
simulates a large commercial turbofan engine in the 90,000
lb thrust class. It models engine operations across various
conditions, including altitudes from sea level to 40,000 feet,
Mach numbers from 0 to 0.90, and sea-level temperatures from
-60 to 103 degrees Fahrenheit. The tool also includes a power
management system for simulating engine performance under
different thrust levels and flight conditions [9]. In this work,
the full list of sensor measurements in the C-MAPSS simulated
data is presented in Fig. 3.

B. Turbofan Engine Degradation Simulation Dataset

Using C-MAPSS, Saxena, Goebel, Simon, and Eklund
created the Turbofan Engine Degradation Simulation dataset
[18]. The tool was employed to generate sensor response
surfaces and operability margins for engine components as
functions of flow and efficiency. Each engine simulation began
with an initial deterioration level, with an exponential rate
of flow and efficiency loss applied to simulate a fault with
progressive effects. Fault directions and progressions were im-
posed randomly, with a time-dependent health index tracking
degradation.

To introduce realism, measurement noise was added to
the simulated data, which otherwise assumes “ideal” sensors
and actuators with no dynamics, delays, errors, or biases
[9]. The resulting dataset includes time-series sensor data
capturing engine degradation from normal operation to failure.
Each dataset reflects the usage history of a fleet of engines,
supporting the development of algorithms for predicting RUL.
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C. Dataset Structure

As shown in Fig. 3, the datasets in this work represent a fleet
of turbofan engines. Each simulated engine’s data is structured
as an n×26-dimensional matrix where n represents the engine
cycles per trajectory. Each row contains data for one cycle:
the first column identifies the engine, the second indicates
the cycle number, columns 2-5 denote operational settings,
and columns 6-26 record engine sensor measurements. The
dataset contains four sub-datasets, each simulating different
fault modes, and operating conditions, detailed in Table I.

FD001 FD002 FD003 FD004
Training Trajectories 100 260 100 249
Testing Trajectories 100 259 100 248

Operating Conditions 1 6 1 6
Fault Modes HPC HPC HPC & Fan HPC & Fan

TABLE I
DATASET DETAILS. NUMBER OF TRAINING AND TESTING TRAJECTORIES,

OPERATING CONDITIONS, AND FAULT MODES IN EACH OF THE FD001,
FD002, FD003, AND FD004 SUB-DATASETS.

D. Engine Operating Condition Complexity

Engine operability margins, which indicate the engine’s dis-
tance from operational limits (e.g. stall and temperature limits),
vary with operational conditions [18]. The sub-datasets model
different levels of operating condition complexity, which are
determined by the combination of altitude, mach number, and
throttle-resolver angle (TRA) parameters.

• FD001 and FD003: Simpler operating conditions.
• FD002 and FD004: More complex operating conditions.
FD001 and FD003 represent more simple operating sce-

narios, while FD002 and FD004 simulate complex operating
conditions. Sensor data frequency distributions, shown in
Fig. 4, reveal that the simpler operating scenarios (FD001
and FD003) often produce Gaussian sensor value distributions
while more complex datasets (FD002 and FD004) exhibit

a disparate distribution of sensor values. This indicates that
patterns of degradation will differ with operating conditions,
so the predictive model must be capable of distinguishing
these nuanced patterns. Each sub-dataset is split into separate
training and testing datasets. In each training set, engine data
ends when the health index reaches 0. In each testing set, the
rows of data truncate before the engine reaches the point of
failure. The goal is to predict the RUL of the turbofan engine.

IV. RQ1: PROPOSED METHOD AND PERFORMANCE
ANALYSIS

To address RQ1, we explain our design of the proposed
prediction framework and examine its performance forecasting
turbofan engine RUL across the various engine operating con-
ditions in the Turbofan Engine Degradation Simulation dataset.
We examine how different feature selection approaches impact
performance, and we identify the approach that yields the
best results across each operating scenario. Fig. 5 provides
an overview of our experimental setup.
A. Experiment Setup

1) Data Preparation: 1 Piecewise RUL target function.
The ground truth RUL values in the testing set are provided
only for the final engine cycle, while the training set does not
contain RUL labels. Without access to a physics-based model,
we applied a piecewise linear degradation function (Fig. 6)
as utilized in prior research [43], [44], to cap RUL values
and account for non-linear degradation beyond certain usage
thresholds. This approach mitigates the risk of overestimating
RUL and more accurately captures the actual degradation
patterns observed in turbofan engines.

2 Data normalization. Variations in operating conditions
cause significant discrepancies in sensor measurement pat-
terns, making data normalization essential to ensure consistent
feature scaling. The feature data is normalized using Eq. 1:

X
′
i =

Xi − µ

γ
(1)

Here, Xi represents the original sensor measurement for a
specific feature, X

′

i denotes the normalized value of Xi, µ
indicates the mean value of the feature across all samples in
the dataset, and γ refers to the standard deviation of the feature
across all samples. This normalization process scales the data
to have a mean of 0 and a standard deviation of 1, ensuring
that features with varying units or magnitudes are brought to
a consistent scale. This improves both the performance and
stability of machine learning models.

2) Distinction of Operating Conditions: Given the influ-
ence of engine operating conditions on the degradation pat-
terns captured in sensor data, we used K-means clustering
to analyze the variations relative to these conditions [45].
The clustering process was guided by the three operational
parameters (columns 3-5 in the dataset): Altitude (OPS1),
Mach Number (OPS2), and Throttle Revolver Angle (OPS3).
This process segments the dataset into distinct clusters rep-
resenting unique combinations of operating conditions. Sub-
datasets FD001 and FD003 contain limited variation in these
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parameters and thus produce a single cluster, while sub-
datasets FD002 and FD004 contain more variety and ac-
cordingly produce six distinct clusters. These clusters were
incorporated into the dataset as re-engineered features, labeled
OP1 through OP6, to signify the presence of specific operating
conditions for each sensor measurement. These features are
encoded as boolean values, where a value of 1 indicates that
a sensor measurement belongs to a particular cluster, and 0
indicates otherwise.

3) Feature Engineering: To reduce data dimensionality
while preserving variance, we applied Principal Component
Analysis (PCA) preserving 95% variance to produce a sep-
arate feature-selected dataset. To capture more subtle and
intricate relationships within sensor measurement patterns, we
employed polynomial feature mapping to create the separate,
expanded version of the dataset. We chose to experiment with
different dimensionalities in order to gain insight into how best
to account for the variation in sensor measurement patterns and
correlations across operating scenarios.

B. Proposed Methodology

In this work, we propose three novel variants of the GBDT
algorithm. GBDT is an ensemble learning method that con-
structs a sequence of decision trees, where each tree learns
from the residual errors of its predecessors to minimize pre-
diction error. Training begins with a base tree and sequentially
adds trees to correct prior errors, using a learning rate to pre-
vent overfitting. The final model, a weighted combination of
all trees, effectively captures complex nonlinear relationships
between engine sensor measurements and RUL values [46].

We chose GBDT as the foundational framework not only
for its low computational requirements but also for its intuitive
predictive transparency, which provides valuable insights into
the factors influencing its predictions. Unlike deep learning
methods, often regarded as black-box models, GBDT provides
a transparent structure that clearly demonstrates the impact of
individual features on its output.

Specifically, we develop three variants of the GBRT algo-
rithm: GBRT I, trained on the original dataset without feature
engineering; GBRT II, trained on the feature-selected version
of the dataset; and GBRT III, trained on the feature-mapped
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version of the dataset. Each version underwent tuning on the
training set of each sub-dataset to optimize several architecture
hyperparameters, including the learning rate, number of boost-
ing stages, maximum tree depth, minimum samples required
to split a node, minimum samples per leaf, number of features
considered for the best split, and the fraction of samples used
for training base learners. Following this tuning process, each
model version was tested on the corresponding testing set to
assess performance.

C. Evaluation Metrics

The development of uniform evaluation metrics remains
challenging for this task due to the diverse needs of the avia-
tion industry and evolving regulatory standards. Unfortunately,
the lack of a standardized performance metric complicates
the comparison of results across studies and the evaluation
of the progress within this field [32]. We thus adopted the

scoring metric recommended by the dataset developers in [18],
referred to in this paper as the “PHM Score” (Equation 2).
This metric, which was used to assess submitted solutions to
the 2008 PHM Challenge [18], penalizes late failure predic-
tions more heavily than early ones, reflecting the aerospace
industry’s emphasis on early risk aversion.

Despite its design, the PHM Score has several limitations.
It is sensitive to outliers, biased towards algorithms that
underestimate RUL, and produces a single numeric value
that can be too ambiguous for comprehensive performance
comparisons. To counter these limitations, we incorporate an
additional evaluation metric based on the frameworks proposed
in [47] and [48]. Among these, Root Mean Squared Error
(RMSE), defined in Eq. 3, was selected for its ability to
equally penalize early and late RUL forecasts. RMSE is widely
used in related studies, allowing direct comparisons [20]–[24],
[49], [50].

PHM Score =

{ ∑n
i=1 e

− d
13 − 1 for d < 0∑n

i=1 e
d
10 − 1 for d ≥ 0

n = number of engine cycles
d = predicted RUL - true RUL

(2)

RMSE =

√√√√ n∑
i=1

d2

n

n = number of predictions
d = predicted RUL - true RUL

(3)

The PHM Score aggregates these penalties across all cycles,
but its sensitivity to outliers and lack of interpretability limit
its effectiveness in some cases. RMSE offers a clear and
interpretable measure of prediction accuracy, making it a
valuable addition to our evaluation framework.

D. Experiment Results

Figure 7 illustrates the performance of the three GBRT
variants (GBRT I, GBRT II, GBRT III) across the four sub-
datasets which each represent a unique operating scenario. The
results emphasize the significant impact of operating condition
complexity on predictive performance.

In the simplest scenario, sub-dataset FD001, which simu-
lates a single fault mode and operating condition, GBRT I
(trained on the original dataset) achieves both the best RMSE
and PHM Score. Conversely, GBRT II (trained on the feature-
selected data) produces the weakest accuracy and PHM.

For FD003, which also simulates a single operating condi-
tion but two fault modes, GBRT I achieves the lowest RMSE,
slightly outperforming GBRT III. However, GBRT III achieves
a significantly better PHM Score, indicating an improved
prediction timeline for the sub-dataset’s degradation pattern.

Sub-dataset FD002, which includes six operating condi-
tions, simulates more complex degradation patterns. In this
case, GBRT III achieves both a slightly better RMSE and a
superior PHM Score , which indicates the advantage of using
feature mapping to learn complex, non-linear degradation
patterns.

Finally, in the most intricate scenario, FD004, which com-
bines six operating conditions with two fault modes, GBRT I



FD001 FD002 FD003 FD004
GBRT I 12.04 13.64 11.37 12.32
GBRT II 15 18.06 13.06 16.64
GBRT III 13.16 13.35 11.86 12.39
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Fig. 7. The RMSE for each algorithm variant (GBRT I: original features, GBRT II: feature-selected data, GBRT III: feature-mapped data) is shown on the
left, while the corresponding PHM Score values are displayed on the right. Fault modes (HPC degradation and combined HPC and fan degradation) and the
number of operating conditions simulated in each sub-dataset are indicated between panels below both graphs. The best RMSE and PHM Score values are
highlighted in red.

achieves the lowest RMSE. However, GBRT III again achieves
the best PHM Score.

V. RQ2: PERFORMANCE COMPARISON

A. Experiment Design

To benchmark the performance of our proposed GBRT-
based algorithms, we compared GBRT I and GBRT III against
several recently published solutions and several widely-
implemented techniques for turbofan engine RUL prediction.
We chose the recent methods, ConvGAT [20], FCDAE-CNN-
LSTM [21] based on their novel contributions to this field,
and the rest were chosen for their frequent adoption in related
studies, making them suitable benchmarks for assessing the
relative strengths and weaknesses of our approach.

All selected methods were trained and tested on each of the
four sub-datasets using the same evaluation metrics: RMSE
and PHM Score. This consistent experimental setup ensures
this performance comparison is consistent and insightful.

For further insight, we provide a review of the comparison
solutions’ architectures:

• ConvGAT [20]: The ConvGAT solution combines graph
neural networks (GNNs) with sensor embeddings to
learn complex, non-linear relationships between sensor
measurements, which flexibly models spatial correlations
between individual sensor data patterns. This architecture
also includes a convolutional layer before the GNN,
which extracts features from sensor data to serve as initial
node feature vectors.

• FCDAE-CNN-LSTM [21]: This solution integrates a
Fully Convolutional Denoising Autoencoder (FCDAE)
with a combined CNN-LSTM architecture. The FCDE
combines a fully convolutional network (FCN) for feature
reconstruction with a denoising autoencoder (DAE) for
noise reduction, ensuring minimal reconstruction error

during data preprocessing. The parallel CNN-LSTM ar-
chitecture is employed to capture both spatial and tem-
poral characteristics of the denoised data.

• Other methods [22]: We also provide a comparison
to [22]’s implementation of traditional machine learning
models such as SVM, Multi-Layer Perceptrons (MLP),
and standalone Deep-Belief Networks (DBNs). We also
make a comparison to the performance of [51]’s imple-
mentation of LSTM and [52]’s implementation of DCNN.
While these architectures are foundational, with the ad-
vancement of new hybrid techniques, their performance
often serves as a baseline for constructing and evaluating
more complex techniques.

B. Experiment Results

Figure 8 displays the results of this comparison. Both
GBRT I and GBRT III demonstrate strong performance when
measured by RMSE: GBRT III achieves the lowest RMSE of
13.4 on FD002, while GBRT I achieves the lowest RMSE of
12.3 on FD004. On FD001 and FD003, ConvGAT achieves
the best RMSEs of 11.3 and 11.0, respectively [20]. However,
GBRT I delivers comparable results with RMSEs of 12.0 for
FD001 and 11.4 for FD003. These results show that GBRT
I is able to achieve a highly competitive level of accuracy.
Additionally, unlike other methods that exhibit notable ac-
curacy variations between the simpler operating scenarios
(FD001/FD003) and more complex ones (FD002/FD004), both
GBRT I and GBRT III maintain their consistent accuracy
across all datasets, demonstrating their adaptability to diverse
degradation patterns.

Turning to the comparison of PHM Scores, while neither
GBRT method achieves the best scores overall, GBRT III
performs competitively on FD004 and FD002. For FD004,
GBRT III achieves a score of 2016.4, second only to Con-
vGAT’s 1231.17 [20]. Similarly, on FD002, both GBRT I and



FD001 FD002 FD003 FD004
GBRT I (Proposed) 12 13.6 11.4 12.3
GBRT III (Proposed) 13.2 13.4 11.9 12.4
ConvGAT 11.3 14.1 11 15.5
FCDAE-CNN-LSTM 12 16.6 11.8 18.2
SVM 40.7 53 46.3 60
MLP 16.8 28.8 18.5 31
DBN 15.2 27.1 14.7 29.9
LSTM 16.1 24.5 16.2 28.1
DCNN 12.6 22.4 12.6 23.3
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GBRT III deliver competitive scores of 1424.28 and 1382.19,
respectively, closely aligning with the FCDAE-CNN-LSTM
method’s score of 1466.03. However, ConvGat significantly
outperforms all other methods on FD002 with a score of
771.61.

Overall, GBRT I and GBRT III demonstrate robust pre-
dictive accuracy across all four operating scenarios, though
their scores are only competitive on FD002 and FD004. Given
that these datasets include six operating conditions, GBRT III
appears particularly effective at capturing complex degradation
patters, though it faces challenges with timely prediction in
simpler scenarios.

VI. RQ3: PERFORMANCE METRICS

Prognostic methods are application-driven, and their evalua-
tion metrics often vary to suit specific scenarios. As a result, it
is challenging to establish a universal evaluation standard [47]
[48]. Generally, it’s preferred to predict early rather than late
in high-stakes environments so that faults can be mitigated as
soon as possible, but some systems have economic constraints
that make prediction precision more paramount, because while
failure is hoping to be avoided, early predictions might result
in unnecessary costs. The resulting variance in terminologies
and evaluation methods across different studies makes it
difficult to establish a fair basis for comparing algorithms
even when they are deemed successful within their respective
contexts. Without a focused methodology, it is quite difficult
to objectively compare the performance of algorithms.

The predictive capability of a prognostic solution is critical,
as decision-makers rely on these predictions to inform mainte-
nance strategies. To evaluate solutions, researchers define PPIs
to measure the importance of characteristics like prediction
accuracy, uncertainty, and precision [41]. However, these PPIs
are often aggregated into opaque metrics, which obscure how
specific factors influence the overall score.

In the context of turbofan engine prognostics, timeliness of
prediction is particularly important. Late predictions may lead
to system failures, while overly conservative early predictions
can impose unnecessary operational costs. The PHM Score
employs an asymmetric scoring function, where penalties for
prediction errors grow exponentially and late predictions are
penalized more heavily than early ones. While this metric
captures the preference for early predictions, it has limitations:

Transparency. The PHM Score integrates accuracy and
timeliness of prediction into a single score, making it unclear
how these factors interact. There is no way to distinguish be-
tween a small-magnitude late prediction and a large-magnitude
early prediction, obscuring the underlying performance char-
acteristics.

Standardization. PHM Score aggregates prediction errors
across trajectories without normalization. This means datasets
with more trajectories, such as FD002 and FD004, yield
unavoidably larger scores than those with fewer trajectories,
like FD001 and FD003. Consequently, higher scores may
inaccurately imply inferior performance.

Ambiguity. Beyond ranking solutions by their score, the
metric provides little insight into why one method outperforms
another. This lack of detail does not support efforts to improve
or tailor prognostic algorithms for specific applications.

The limitations of this metric emphasize the need to develop
of a domain-reflective metric that is both transparent and
standardized.

A. Margin-Adjusted Reliability Score

To address these challenges, we designed the Margin-
Adjusted Reliability Score (MARS), a novel performance met-
ric tailored to the turbofan engine prognostics problem. MARS
evaluates the reliability of a RUL predictor by quantifying how
well the algorithm performs within a specified margin of error,
producing a clear and interpretable measure of performance.



Fig. 9. Comparison of MARS values of GBRT II and GBRT III across sub-datasets FD001 through FD004 using margins (-5, 10), (-5, 15), and (-5, 20).
The corresponding score values on each sub-dataset are shown on the bottom.

MARS is defined mathematically in Eq. 4:

MARS : s(b1, b2) =
1

n

n∑
i=1

I(b1 ≤ di ≤ b2)

di = predicted RUL - true RUL for the ith trajectory
b1 = lower bound
b2 = upper bound

(4)

The indicator function I(b1 ≤ di ≤ b2) evaluates to 1 when
the prediction error for the trajectory lies within the defined
margin (b1, b2) and 0 otherwise. MARS scores range from 0
to 1, with values closer to 1 indicating higher reliability and
values closer to 0 indicating lower reliability.

MARS explicitly accounts for a margin of maintenance
anticipation and evaluates algorithm performance within that
margin. This approach provides a standardized measure that
penalizes late predictions while offering flexibility in how
early predictions are assessed. For example, a margin might
allow only a level of prediction uncertainty such that the
true RUL to should fall between five below or ten above
the predicted RUL (b1 = −5, b2 = 10). In such a case, the
necessary actions for fault mitigation can be deferred until the
engine’s predicted RUL falls to 15, but it must occur before the
RUL drops to 5 to ensure safety. With adjustable boundaries
of error uncertainty, MARS can balance the trade-off between
early and late predictions to reflect the specific requirements.

Advantages of MARS: MARS extends the principles of the
PHM Score by addressing the following shortcomings:

• Separation of Prediction Accuracy and Timeliness:
MARS explicitly quantifies how accuracy and timeliness
interact to influence the overall score.

• Standardized Comparisons: MARS ensures consistent
evaluation across any number of trajectories. This stan-
dardization allows for objective comparisons, making it
easier to benchmark algorithms.

• Greater Transparency: MARS clearly illustrates why
a particular solution performs well or poorly, offering
greater insights into how algorithms can improve.

Figure 9 illustrates MARS results for GBRT II and GBRT
III, evaluated with the margin settings of (b1 = −5, b2 = 10),

(b1 = −5, b2 = 15), and (b1 = −5, b2 = 20). We can see how
comparing MARS values alongside the PHM Score increases
our understanding of the performance components.

VII. OBSERVATIONS AND DISCUSSIONS

In this section, we present and summarize our answers to
RQ1, RQ2, and RQ3, discuss the key observations, and give
explanations for our experiment results and observed trends.

A. Observations and Discussions for RQ1

Here, we will present several observations from the out-
comes of our investigation into RQ1, and provide further
explanation for these results.

GBRT II exhibits the weakest accuracy and PHM
Score across all sub-datasets. PCA, the linear dimensionality
reduction technique applied to the data that GBRT II trained
on, is effective at preserving feature variance when feature
relationships are predominantly linear. GBRT II’s comparable
performance on FD001 and FD003, the sub-datasets with the
simpler operating scenarios, suggests that the relationships
between sensor readings are linear. However, the poor per-
formance on FD002 and FD004 implies that PCA cannot
sufficiently preserve the non-linear interactions between sensor
readings during complex operating scenarios.

GBRT I and GBRT III achieve similar accuracy across
the sub-datasets. GBRT I, trained on the original set of
features, and GBRT III, trained on polynomial feature map-
pings, demonstrate comparable accuracy. However, the PHM
Score indicates that GBRT III performs better at predicting
faults in advance. This suggests that the non-linear interactions
captured by the polynomial feature mappings are particularly
important for early fault forecasting. While GBRT I achieves a
higher PHM score on FD001, the simplest operating scenario,
this likely reflects its ability to accurately predict faults that
are imminent or obvious.

Our investigation into RQ1 demonstrates the importance of
of aligning feature engineering techniques with the underlying
complexity of the scenario under study. This suggests that
evaluating methods not just on their overall performance but
also on their behavior across different conditions is important
to examine.



B. Observations and Discussions for RQ2

Here, we present and explain our observations of the RQ2
outcomes.

Most methods under study exhibit disparities in ac-
curacy between simple operating conditions (FD001 and
FD003) and complex operating conditions (FD002 and
FD004), but proposed methods exhibit a much lower level
of this variance. This consistency in the GBRT models’
performance is likely due to the inherent strengths of Gradient
Boosting Tree algorithms. They excel at identifying feature
importance and capturing non-linear relationships between
features, which are critical to discern in turbofan engine sensor
data. This characteristic implies that GBRT models are a robust
solution to make accurate predictions about engine health
across a variety of operating conditions.

While the GBRT models achieve competitive accuracy
across all sub-datasets, competitive PHM Scores on FD002
and FD004, they yield relatively poor PHM Scores on
FD001 and FD003. This phenomenon can be attributed
to the architecture of the GBRT algorithm. GBRT models
iteratively optimize their predictions by correcting errors made
in previous iterations, enabling them to capture non-linear
relationships and complex interactions between features. This
makes them particularly well-suited for learning more complex
patterns, such as those in FD002 and FD004, where precise
fault detection requires understanding subtle feature relation-
ships and non-linear patterns. On simpler datasets like FD001
and FD003 where feature interactions are less complex, GBRT
models’ tendency to fit global patterns for maximum accuracy
might lead to a more frequent overestimation of the RUL. To
alleviate this issue, training the proposed GBRT methods with
an asymmetric loss function might encourage less frequent
RUL overestimation, though it’s generally not advisable to
artificially skew the predictions.

The outcome of RQ2 contextualizes the robustness and
adaptability of the proposed model, particularly when it comes
to prediction within highly complex scenarios. Compared to
other methods, the proposed method demonstrates a combi-
nation of strong performance, better computational efficiency,
and prediction transparency, making them a highly practical
and effective choice for real-world applications.

C. Observations and Discussions for RQ3

Even on the narrowest margin, GBRT III consistently
achieves a MARS value of 0.4 or higher, with its best
performance on FD002. However, when measured by the
PHM Score, its performance on FD001 and FD003 appears
superior to its performance on FD002. This discrepancy can
be attributed to the higher number of trajectories in FD002
compared to FD001 and FD003 (see Table I). The PHM Score
aggregates errors across all trajectories, meaning sub-datasets
with more trajectories, like FD002, inherently produce larger
aggregated error values, which can misleadingly suggest worse
performance. In contrast, MARS normalizes results, enabling
fair comparisons across sub-datasets regardless of their size.
This highlights the importance of employing a normalized

metric like MARS, which provides a clearer and more accurate
assessment of performance while accounting for the structural
differences between sub-datasets.

MARS indicates that GBRT II’s weakest performance
occurs on FD002, while the PHM Score suggests its
weakest performance is on FD004. Knowing that FD004
has fewer trajectories than FD002 (Table I) allows us to rule
out trajectory number as the cause of this difference. Instead,
it suggests that GBRT II exhibits more overestimation of RUL
on FD004, which the PHM Score penalizes more heavily. This
observation emphasizes the value of MARS in distinguishing
performance characteristics and complements the PHM Score
by offering additional interpretive context.

The outcomes of RQ3 underscore the complementary power
of using both MARS and the PHM Score for evaluating
prognostic models. While the PHM Score captures aggregated
performance and penalizes late predictions, MARS normal-
izes results across datasets and provides a nuanced view of
accuracy and timeliness within a specified margin. Together,
these metrics allow for a deeper understanding of model
performance, revealing insights that would otherwise remain
obscured if only one metric were used.

Using MARS, researchers can make more informed, data-
driven decisions about model selection and refinement.

In the future, it will be beneficial to use this framework
to investigate a fully domain-reflective metric. Such a metric
could provide a unified, transparent evaluation framework for
assessing and improving prognostic solutions.

VIII. CONCLUDING REMARKS

In this study, we propose GBRT-based solutions for fore-
casting turbofan engine RUL and introduce the MARS evalu-
ation metric to enhance the understanding of turbofan engine
fault prognostics systems. The architecture of our proposed
method is particularly well-suited for this application due to
its exceptional predictive power and algorithmic transparency,
which is an essential consideration for high-stakes real-world
environments like aviation systems. By analyzing the effects
of different dimensionalities of sensor data, we explored
how these approaches influence predictive performance across
diverse engine operating scenarios. We also show that our
proposed method has comparable predictive performance to
complex deep learning-based approaches. Additionally, our
assessment of our methods using the MARS metric revealed
insights that current evaluation metrics fail to capture, show-
ing that MARS offers a more nuanced and industry-relevant
perspective for evaluating turbofan engine RUL predictive
methods. This work moves towards more effective and reliable
predictive maintenance frameworks in aviation. The datasets,
tools, and algorithms from this work will be open-sourced to
support community research.
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