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Abstract—As deep learning technology advances Autonomous
Driving (AD), existing AD methods encounter performance
limitations, especially in handling corner cases, interpretability,
and verifiability, which are crucial for the safety of connected
and autonomous vehicles. Multimodal Large Language Models
(MLLMs) demonstrate remarkable understanding and reasoning
capabilities, presenting a transformative opportunity to overcome
challenges faced by traditional AD algorithms. We conduct a
comprehensive study on the application of MLLMs in AD,
exploring their potential to address critical challenges faced
by traditional AD algorithms. We construct a Visual-Question-
Answering dataset for model fine-tuning to address hallucinations
and poor logic analysis issues in MLLMs. We then decompose
the AD decision-making process into Scene Understanding,
Prediction, and Decision, allowing MLLMs to construct Chain-
of-Thought to make decisions step by step. Subsequently, we
propose a new framework enabling models to perform AD tasks
under conditions of limited local computing resources, few-shots,
multimodality, and complex scenarios, enhancing the flexibility of
future AD system deployment. Our extensive experiments and in-
depth analyses demonstrate the significant advantages of MLLMs
for AD. We also discuss the strengths and weaknesses of existing
methods, providing a detailed outlook on MLLMs in AD.

Index Terms—Autonomous driving, Multimodal Large Lan-
guage Model, Chain-of-Thought

I. INTRODUCTION

Recently, with the vast improvements in computing tech-
nologies (e.g., sensors, deep learning) and the broad deploy-
ment of communication mechanisms (e.g., 5G/6G, DSRC [1],
C-V2X [2]), the advent of Tesla’s Autopilot [3], Google’s
Waymo [4], and Baidu’s Apollo [5] has propelled autonomous
vehicles (AVs) to into prominence. However, it is gener-
ally accepted that the existing deep learning-based scenario
understanding, prediction, and decision-making technologies
for AVs heavily rely on existing data. In the context of
corner cases, which may include irregular behaviors of road
users, unexpected obstacles, adverse weather conditions, and
complex traffic accident scenes [6], deep learning-based AV
systems often fail to respond appropriately [7]–[9].

Previous work generally divided the AV’s functions into
three stages: scene understanding, prediction, and deci-
sion [11]. These stages are interrelated, where the results of
scene understanding (e.g., identifying vehicles and pedestri-
ans) are normally used for future behavior predictions. Then
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Fig. 1: Scenarios, where AVs fail to accurately analyze,
predict, and make decisions, include (a) Road surfaces with
standing water [10] which may incorrect positioning of the AV
in relation to the image of the water surface. (b) The construc-
tion intersection where AVs may fail to predict accurately due
to overly complex and unfamiliar scenes. (c) Snow-covered
roads where AVs struggle to make correct decisions due to
lack of information.

the predictions will facilitate path planning and decision-
making. However, these stages both face challenges due to
corner cases, and errors in any stage can lead to the failure of
the overall tasks. For instance, as shown in Fig 1(a), the model
may erroneously identify reflections on a waterlogged road
surface as false artifacts. This issue arises in scenarios includ-
ing, but not limited to, extreme weather conditions, uncommon
road obstructions, rare road signs, and obscured traffic signals.
Regarding prediction, since the predictive model is primarily
trained on historical data, it may struggle to accurately forecast
rare traffic events or emergencies. In Fig 1(b), traditional
methods often fail to make correct predictions when road
markings do not align with the actual traffic conditions due to
construction work. In terms of planning, while plotting vehicle
routes is relatively straightforward under normal conditions,
it becomes more challenging during emergencies or unusual
traffic situations. As depicted in Fig 1(c), when confronted



with heavy snow accumulation, the planner needs to exhibit
enhanced adaptability.

In contrast, human drivers can recognize anomalies, foresee
future events, and make decisions before these events occur.
The core of this proactive decision-making ability lies in
reasoning and extrapolating common-sense knowledge from
new data. Recently, Large Language Models (LLMs) like GPT-
3.5 [12], PaLM [13], and Llama [14] have gained attention for
their memory and reasoning capabilities, which are similar
to the human brain. These models exhibit information anal-
ysis and processing performance that is comparable or even
superior to humans [15]. They also show encouraging signs
in deepening the understanding of complex driving scenar-
ios [16]. In autonomous driving, multimodal inputs such as
visual, radar, and sensor data are often needed [17]. However,
LLMs are limited to processing text data, which restricts their
ability to handle other multimodal information like visual
inputs. With the continuous introduction of Multimodal Large
Language Models (MLLMs) [18]–[20], pre-trained vision-
language models like CLIP [21] and CogVLM [22] demon-
strate strong zero-shot generalization performance across vari-
ous downstream visual tasks. This enables LLMs to effectively
understand multiple data sources, including images, videos,
and point clouds. The emergence of MLLMs presents a poten-
tially transformative opportunity to overcome the challenges
faced by traditional AD algorithms.

In this work, we explored the potential of MLLMs as the
core of AD decision-making, particularly for corner cases. We
also investigated methods for offline deployment of MLLMs
in AVs. Firstly, we proposed an innovative framework to
effectively integrate MLLMs into a computational platform
with capabilities akin to those of an Autonomous Vehicle,
thereby creating an AD Agent. We constructed a Visual-
Question-Answer (VQA) dataset and fine-tuned the CogVLM
model on this dataset to focus more on AD tasks. To mitigate
the effects of illusions by MLLMs and enhance interpretability,
we designed a step-by-step Chain-of-Thought (CoT). The CoT
divides the decision-making process into scene understanding,
prediction, and decision phases, each undergoing detailed
experimental validation. This approach allowed us to more
meticulously assess the potential value and practicality of
MLLMs in various areas within the field of AD.

Specifically, our contributions are delineated as follows:
• We innovatively proposed, implemented, and evaluated

a novel MLLM-based framework that is able to execute
AD tasks under limited local computing resources, few-
shots, multi-modality, and complex scenarios. This at-
tempt offers new insights and possibilities for the future
deployment of more flexible AV systems.

• We devised a scheme to optimize generic MLLMs as
AV Agents by building a VQA dataset and designing a
reasoning chain, effectively reducing model illusions and
enhancing focus.

• Regarding the application of MLLMs in scene under-
standing, analysis, and decision-making, we conducted
experimental validations on each of the three stages using

a real-world dataset. We then performed comprehensive
experiments in a simulated environment using highway-
env [23], which clearly demonstrated the significant per-
formance advantages of the MLLM-driven AV systems.
We also discussed future directions and potential methods
for further improvements.

The rest of this paper is organized as follows: Sec. II reviews
related work of AV algorithms, and experimental design is
detailed in Sec. IV. Extensive experimental results and our
dicussions are shown in Sec. V. Sec. VI concludes the entire
paper.

II. BACKGROUND AND RELATED WORK

A. Traditional Autonomous Driving Technique

The levels of driving automation, as defined by the Soci-
ety of Automotive Engineers [24], range from Level 0 (no
automation) to Level 5 (full automation). With increasing
autonomy, the need for human intervention decreases, while
the requirement for the vehicle to understand its surrounding
environment increases. Existing AD solutions are broadly
categorized into the classic modular paradigm and end-to-end
approaches [25]–[29]. The modular approach breaks down the
AV task into subtasks, each executed in separate modules.
This design offers advantages like modularity and functional
generality, but it comes with challenges related to tuning the
pipeline and managing error propagation. UniAD [8] divides
the end-to-end process into three stages, including perception,
prediction, and planning, and proposes a planning-oriented
pipeline. These methods are usually easier to develop, but they
lack interpretability, posing challenges in diagnosing errors,
ensuring safety, and incorporating traffic rules. Additionally,
these automated systems still fail in many driving corner cases,
such as extreme weather, poor lighting conditions, or rare
situations [30].

Inspired by current limitations, some research in AD is now
focusing on addressing the safety of autonomous systems and
enhancing their reliability [31]. Since deep neural networks
are often considered black boxes, trustworthy AI aims to
make systems more reliable, interpretable, and verifiable. For
instance, generating adversarial safety-critical scenarios for
training AD systems to better handle corner cases [32], [33].
Another approach to enhance overall safety is through vehicle-
to-infrastructure and vehicle-to-vehicle communication. By
leveraging information from nearby instances, the system’s
robustness is improved, allowing for early warnings and en-
hanced situational awareness [34].

B. Advancements in Multimodal Large Language Models

Compared to the limited comprehension abilities of tradi-
tional AD systems, the rapidly evolving LLMs have demon-
strated a significantly enhanced capacity for understanding.
LLMs refer to Transformer language models containing hun-
dreds of billions (or more) of parameters [13], [14], [35]. They
have shown capabilities in understanding natural language and
solving complex tasks through text generation. LLMs can
complete a series of complex tasks by leveraging prompts



containing intermediate reasoning steps. There is a growing
field of research utilizing LLMs to develop autonomous agents
with human-like abilities [36], [37]. These agents use extensive
knowledge stored in pre-trained LLMs to create coherent ac-
tion plans and executable strategies. Despite LLMs’ surprising
zero/few-shot reasoning performance in most natural language
processing (NLP) tasks, they are inherently ’blind’ to visual
information as they can only comprehend discrete text.

Consequently, many works have explored extending the
success of instruction tuning in LLMs to multimodal devel-
opment, resulting in the creation of MLLMs [38], [39]. BLIP-
2 [40] links a trainable pre-trained visual encoder with an LLM
through shallow alignment, mapping image information into
the feature space. However, such methods exhibit poor visual
understanding. Joint image-text training allows for a deep
integration of image and language information. CogVLM [22]
adds a trainable visual expert to the language model, not
only deeply integrating image information but also effectively
preserving textual information. Despite these advances, such
MLLMs still face the problem of illusions [41], although this
can be mitigated to some extent by increasing the number
of parameters and appropriately fine-tuned them. In Sec III,
we introduce a series of methods that effectively mitigate the
issues above.

C. Multimodal Large Language Modals for Autonomous Driv-
ing

Current research on AD with LLMs or MLLMs is still
in its exploratory phase. Existing studies primarily leverage
large language models to address tasks related to AD, such as
perception, reasoning, and planning [42]. LanguageMPC [43]
developed an algorithm that translates LLM decisions into
actionable driving commands through contextual learning
using ChatGPT-3.5. DriveLikeHuman [37] delved into the
process of mimicking human posture in driving, driven by
knowledge. Building on this, Dilu [44] further improved the
memory aspect, enabling it to continuously summarize and
generalize driving information. To enable LLMs to understand
multimodal information, DriveLLM [45] established a multi-
modal encoder that converts multimodal data into strings for
LLM decision-making. However, all these methods face the
challenge of information loss due to textual transmission.

GPT-4 has demonstrated a formidable capability for under-
standing and analyzing visual information [16], [45]. However,
due to its reliance on online computational resources and lack
of open-source availability, it is not suitable for integration into
AV systems. DriveGPT-4 [46] proposed a multimodal model
for an interpretable AV system, which takes multimodal inputs
and outputs control signals. This method embeds multimodal
information into the shallow features of the LLM, resulting in
poor comprehension of visual information due to a scarcity of
extensive visual priors. Dolphins [47] employed an Image-text
jointly trained drive agent, capable of analyzing continuous
image information during driving through dialogues. Neverthe-
less, it still experiences illusions and is unable to execute real
decisions. In contrast, our approach further reduces the like-

lihood of illusions in the model and represents an end-to-end
autonomous driving system capable of executing decisions.

III. EXPERIMENT METHODOLOGY

We have developed a closed-loop autonomous driving con-
trol system with an MLLM as the AV Agent, detailed in
Sec III-A. In Sec III-B, we introduce a context-based step-by-
step thought chain to reduce the occurrence of illusions and
enhance the interpretability of the results. To further focus the
model on the task, we established a Visual Quality Assessment
(VQA) dataset, as discussed in Sec III-C. Finally, the fine-
tuning and deployment of the model are presented in Sec III-D.

A. Framework Design

Traffic 

Environment

Memory

MLLM

Agent

Vector 

Encoder

Prompt

Embedding

Action 

Decoder

Traffic Condition

Driving Parameter

Vehicle Vision

Multimode Information

Observe

Autonomous

Vehicle

Feedback

Update

Fig. 2: An end-to-end autonomous driving framework with
a Multimodal Large Language Model (MLLM) at its core.
The MLLM integrates multimodal information with memory
and prompts to make decisions, ultimately outputting action
commands.

As discussed in Sec II-C, existing methods based on LLM
encode multimodal information into character information that
can be processed by the LLM, often resulting in significant
information loss. To better harness the potential of MLLM
as an AD Agent, we designed a more rational and easily
expandable Framework for AD control decisions.

As illustrated in Fig 2 and Alg 1, we have designed and
implemented an efficient and comprehensive AD decision
system centered around a MLLM. Initially, we transmit task
objectives, local traffic rules, and other relevant information
as prompts, along with a memory database, to initialize the
MLLM. This approach enables the integration of historical
experience and real-time information while analyzing encoded
data. In this way, the MLLM agent can make more accurate
and context-adaptive decisions.

After initializing the MLLM, it begins to collect multimodal
environmental information, including but not limited to traffic
conditions, driving parameters, vehicle vision, sensor data, etc.
We use an Encoder to transform this multimodal information
into vector-style strings or image matrices that the MLLM
can process. Subsequently, the MLLM receives this encoded
vector and combines predefined rules and contextual data to
make decisions following a thought chain approach. Once



Please describe what is in the image.

From my perspective, I am driving 

through a city on a rainy day. The road 

is wet, reflecting the surroundings. 

There are multiple vehicles ahead of 

me, including cars and a larger vehicle 

that seems to be a construction or 

maintenance vehicle. I can see tall 

buildings on the left, and there's a 

construction site visible on the right.  

Scene Understanding

Make predictions about other objects in 

the image.

Given the urban setting and the 

presence of a construction zone, there 

might be other objects such as traffic 

lights, pedestrian crossings, billboards, 

streetlights, and possibly some street 

vendors or stalls. The construction site 

might have cranes, scaffolding, and 

construction workers.

Prediction

Plan the next action.

Considering the wet road, reduced 

visibility due to fog, and the 

construction zone ahead, I should drive 

at a reduced speed, maintain a safe 

distance from the vehicle in front, use 

my fog lights if they are functional, and 

be extra cautious at intersections or 

turns. It would also be wise to stay alert 

for any construction workers or 

equipment on the road.

Decision

Fig. 3: Step-by-Step Thinking Chain, enabling the model to generate information progressively, resulting in more interpretable
outcomes.

Algorithm 1 Automated Driving Decision-Making Process

Input: Vehicle Vision (VV), Driving Parameters (DP), Traffic
Conditions (TC), Prompt, Previous Memory (Mem old)

1: sensor system.activate()
2: encoder config.set parameters()
3: MLLM Agent.initialize(Prompt, Mem old)
4: collected data

← sensor system.collect data(VV, DP, TC, ...)
5: encoded data← vector encoder.encode(collected data)
6: decision

← MLLM agent.analyze(encoded data, Mem old)
7: vehicle command← action decoder.decode(decision)
8: vehicle system.execute(vehicle command)
9: performance← evaluate(decision, vehicle command)

10: MLLM agent.adjust model(performance)
11: environmental impact

← analyze feedback(vehicle command)
12: MLLM agent.update model

(environmental impact, Mem old)
13: Mem new

← memory database.store trip data()
14: MLLM agent.iterate model()
Output: Improved Decision and Action Patterns, Updated

Memory (Mem new)

a decision is made, an action decoder converts the high-
level decision of the MLLM agent into executable commands.
In actual execution, the system continuously optimizes the

MLLM model through performance evaluation and environ-
mental feedback analysis. This includes adjusting the model
based on the results of decision-making and vehicle command
execution and updating the model according to the impact
of vehicle behavior on the environment. Meanwhile, new
memories (Mem new) are stored, including collected data,
decisions made, and performance evaluations, providing a
richer context for future decisions. This design not only
enhances the accuracy of decisions and the efficiency of action
patterns but also ensures that the system continuously learns
and adapts over time, demonstrating a high degree of dynamic
adaptability and potential for ongoing improvement.

B. Chain-of-Thought Design

Although the fine-tuned model shows more proficiency
in AD tasks, it sometimes still experiences illusions. The
primary reason is the large gap and weak logical connection
between the data source and the task objective. Chain-of-
Thought (CoT) reasoning, which generates and infers the
thought process within the model’s contextual window, can
help the model exhibit intelligence and logical reasoning
abilities. A complete CoT-inclusive prompt typically consists
of three parts: Instructions, Rationale, and Exemplars. This
approach significantly enhances the model’s logical reasoning
capabilities and the interpretability and credibility of the
results through a step-by-step method.

We divided the model’s reasoning process into three steps:
scene understanding, prediction, and decision. First, we em-
bedded the rationale and exemplars into the VQA dataset for



the model to learn. Subsequently, during the reasoning process,
we posed three questions, as shown in Fig 3, prompting the
model to propose its final decision. This significantly improved
the accuracy and interpretability of the decisions.

C. Visual-Question-Answer Dataset Build

Benefiting from the vast prior knowledge inherent in
MLLMs, these models usually can achieve few-shot or even
zero-shot learning tasks. However, traditional open-source
models, in pursuit of more versatile performance, often com-
promise their capabilities in specific domains to enhance their
generalizability. To make the model more focused on AD tasks
and further address the illusion problem inherent in the model,
we fine-tuned it. Due to the severe scarcity of relevant datasets,
we selected numerous typical cases from BDD100k [48] to
construct a VQA dataset.

Inspired by Segment Anything [49], we initially selected
a few images for manual annotation. Subsequently, we em-
ployed ChatGPT-4 to annotate subsequent images automat-
ically through context-based learning. We then manually
screened and optimized the annotated content, prompting
ChatGPT-4 to re-annotate any samples that did not meet
standards. After four iterations, we annotated 100 cases in a
VQA dataset. The dataset, exemplified by Fig 4, primarily
consists of three parts: Visual, Question, and Answer. The
quality of the dataset construction is crucial for enabling the
model to understand the task process better and perform more
professionally. Through three-part question-and-answer data
cases, we established a CoT that breaks down the AD task
into subtasks to be resolved step by step. To ensure that the
action decoder can correctly decode the model’s output, we
specified the output format in the third part of the Answer,
adapting it to meet the requirements of the action decoder.

D. MLLM Fine-tuning and Deployment

As mentioned in section II-B, existing MLLMs generally
suffer from poor visual understanding and illusions. We chose
the recently open-sourced MLLM, CogVLM, as our baseline.
Specifically, CogVLM first uses a pre-trained Vision Trans-
former (ViT) and an MLP Adapter to extract visual and textual
information into the same feature space. It then introduces
a Visual expert module, as shown in Fig 5, replacing the
transformer module in each layer. The visual expert module
extends a new QKV matrix and FFN [50] based on the
transformer to process visual feature information, freezing
all other parameters and training only the newly expanded
parts and the MLP Adapter. This integration allows CogVLM
to merge image and text information effectively in the deep
feature space of a large model, enhancing the model’s visual
understanding while retaining its language comprehension
ability.

First, we fine-tune the CogVLM with the VQA dataset
constructed in Sec III-C. To realize the framework de-
scribed in Sec III-A, we then manage the MLLM using
the LangChain [51] framework. To deploy CogVLM on a
computing platform matching the computational power of

User prompt:  You are now an AI agent driver. While driving on the streets, please answer the 

following questions from a driver’s point of view. Describe what is in the image. 

Assistant response:  The road, a four-lane, two-way street with yellow double solid lines and white 

markings, hosts multiple vehicles, indicating rush hour. A silver sedan, possibly stopped due to a signal 

or congestion, is closest. Traffic lights display red and green, suggesting varying signals for different 

lanes. The sky is clear with scattered clouds.

User prompt: Make predictions about the behavior of objects in the image.

Assistant response:  Vehicles will resume movement when traffic lights turn green, potentially in 

waves based on traffic volume.  Traffic lights control the flow through different phases.  Pedestrians 

and cyclists, if present, follow their signals.  Street scene and weather, clear and sunny, do not impact 

traffic conditions.

User prompt: Please make decisions about your subsequent driving behavior. Requires you to format 

the content as <Example>:

Assistant response: ACTIONS = {

Speed: 'Maintain speed.',

Direction: 'Continue straight.',

Brake: 'Gently brake if necessary due to traffic or red lights.',

Signaling: 'No signal', … }

# VQA dataset case

Fig. 4: Examples of the visual-question-answer (VQA) dataset.

Fig. 5: Visual expert module based on transformer, the image
features have a different QKV matrix and FFN, which allow
CogVLM to gain a deeper visual understanding

AVs, we utilized a model with 8-bit quantization to reduce
computational demands. Furthermore, to enhance the model’s
scalability in later stages, we provided detailed interface
documentation for each module, significantly improving the
model’s replaceability and the framework’s adaptability.



Prompt:
This is a picture taken with a car camera. Describe what you see, especially traffic 

participants, road topology, and traffic lights and traffic conditions (if applicable).

The image appears to be taken from the perspective of a car's rearview camera, 

capturing a view of a city street. On the left side of the road, there's a man riding a 

small truck or cart with goods. There are multiple cars parked on both sides of the 

road, and a few are moving. Traffic lights can be seen in the distance, and the 

road seems to be a two-way street with clear markings. The road is flanked by 

buildings, trees, and some street furniture.

CogVLM:
The image appears to be taken from the perspective of a car camera, capturing a 

traffic scene during nighttime. There are multiple vehicles on the road, including 

cars, trucks, and a motorcycle. There are road cones set up, indicating some kind 

of roadwork or obstruction. The road seems to be multi-lane, with an overpass 

visible in the background. Traffic lights are not clearly visible, but the overall 

traffic seems to be slow-moving due to the cones and the presence of multiple 

vehicles.

Prompt:
This is a picture taken with a car camera. Describe what you see, especially traffic 

participants, road topology, and traffic lights and traffic conditions (if applicable).

CogVLM:

Scene Understanding

Fig. 6: Implement the fine-tuned CogVLM for traffic environments description. Purple font indicates correctly understood
answers, while red fonts denote misinterpreted answers. Result demonstrates a remarkable capability for visual comprehension
and description, yet it is susceptible to occasional inaccuracies in judgment due to influences from uncommon surrounding
environments.

IV. EXPERIMENT DESIGN

To gain a more comprehensive understanding of MLLM’s
capabilities in autonomous driving, we conducted multiple
experiments focusing on the proposed method. First, we detail
the specific configurations and implementation details of the
experiments in Sec IV-A. In Sec IV-B- IV-D, we conduct
experiments specifically targeting the three aspects of MLLM
in scene understanding, prediction, and decision. Finally, in
Sec IV-E, we carry out simulation experiments to compare
our approach with traditional mainstream methods, providing
further evaluation of our method.

A. Experimental Detail

VQA and Test Datasets. For the VQA dataset, we selected
and annotated 100 images from BDD100k [48], with specific
details presented in Sec III-C. Subsequently, from BDD100k,
excluding the content of the VQA Dataset, we chose some
complex scenarios to test the performance of MLLM. From
these experiments, we selected typical cases for display in
Sec IV-B- IV-D.
Model Finetuning and Experiments. We chose
CogVLM [22] as our baseline and fine-tuned it using
the VQA dataset on 4 × A100 GPUs. The fine-tuned
CogVLM was then deployed for inference on two GeForce
RTX 3090 GPUs. Initially, to further understand and test
the MLLMs’ capabilities in comprehending and reasoning
about autonomous driving tasks, we used CogVLM to infer
typical images from scene understanding, prediction, and

decision, outputting interpretable text. We assessed model
performance through semantic analysis of the output content.
Subsequently, to test the Framework’s potential for executing
complete Autonomous Driving tasks, we deployed a fully
autonomous driving task on Highway-Env [23], comparing
and analyzing it against traditional mainstream autonomous
driving methods.

B. Scene understanding based on MLLM

We conducted a series of experiments focusing on the
Multi-Modal Language Models’ (MLLMs) ability to scene
and understand multimodal information. A classic case from
these experiments is depicted in Fig 6, which comprehensively
reflects the current model’s capacity to comprehend visual
information. In Fig 6, we demonstrate CogVLM’s scene and
understanding based on road images captured by onboard cam-
eras. The model performed commendably in both instances.

The CogVLM accurately identified both dual and single
carriageways, made precise assessments of the current traffic
conditions, and correctly recognized the cars and pedestrians
included in the images. However, it is noteworthy that in
the left example of Fig 6, due to the abnormal parking of
a red sedan, the model made an incorrect judgment regarding
the orientation of the vehicle. In the second case, the overly
complex traffic situation led to a ”illusion” in the model,
where it erroneously perceived the presence of a motorcycle
on the road. These instances not only exhibit the model’s
strengths in accurately interpreting and reacting to standard



Prompt:
Now that you are a driver, predict the movement of people and vehicles in the 

picture.

From the picture, we can see that the traffic lights in the middle of the intersection 

are currently green, indicating that vehicles can pass through the intersection. In 

the picture, there are two vehicles waiting at the red light, while several other 

vehicles are passing through the intersection. On the right side of the picture, 

there are pedestrians walking on the pedestrian crossing, waiting to cross the road. 

Therefore, it can be predicted that after the vehicles in the picture pass through the 

intersection, there will be pedestrians crossing the road, and then vehicles waiting 

at the red light. After these vehicles pass through, there will be more vehicles 

waiting to enter the intersection.

CogVLM:
From the picture, it can be seen that there are many vehicles driving on the road, 

and the traffic is relatively dense. In addition, there are many pedestrians on the 

roadside. Considering the rainy weather, it is expected that the pedestrians will try 

to avoid getting wet and may choose to stay on the sidewalks or use the 

pedestrian overpasses. The vehicles in the picture may also reduce their speed to 

ensure safety, and there may be more braking actions. Therefore, the driver 

should pay close attention to the surrounding vehicles and pedestrians to ensure 

safety.

Prompt:
Now that you are a driver, predict the movement of people and vehicles in the 

picture.

CogVLM:

Prediction

Fig. 7: Predictions of traffic environments were made using the fine-tuned CogVLM. Purple font indicates correctly understood
answers, while red fonts indicate misinterpreted answers. This demonstrates the model’s predictive capabilities in scenarios of
forked road intersections and rainy weather conditions.

driving environments but also highlight its current limitations
in processing complex or abnormal scenarios. Such findings
underline the necessity for further refinement in the model’s
ability to differentiate between standard and atypical traffic sit-
uations, enhancing its overall perception and decision-making
accuracy in diverse driving conditions.

C. Prediction based on MLLM

In this experiment, we specifically selected scenarios in-
volving forked roads and impaired vision due to rain for the
cameras to test the predictive capabilities of our model, as
illustrated in Fig 7. For these tests, the model utilized was
a fine-tuned version of CogVLM. Across these scenarios,
the model demonstrated robust logical reasoning abilities,
effectively integrating and interpreting environmental cues for
accurate prediction.

In the first scenario of Fig 7, the model initially made
a correct identification of the traffic lights, deducing that
the vehicle was in motion while pedestrians were waiting
at the intersection. However, due to the white SUV on the
right side of Case 1 slowing down to maintain distance from
the vehicle ahead, indicated by its brake lights, the model
inaccurately assumed that the SUV was stopping for the
traffic light. In the second scenario, the model successfully
recognized the severely blurred pedestrian in the image. Based
on the weather conditions, it was deduced that the pedestrian
would likely walk along the road to seek shelter from the
rain. However, it mistakenly predicted the presence of pedes-

trian overpasses. Additionally, the model, taking into account
factors like weather and traffic density, correctly anticipated
potential braking actions from surrounding vehicles. These
cases collectively showcase the potent logical reasoning ca-
pabilities of MLLMs as AD Agents. They not only exhibit
the model’s proficiency in dealing with complex and variable
real-world driving conditions but also highlight areas where
further refinement is needed, particularly in interpreting more
nuanced and less predictable aspects of human and vehicular
behavior.

D. Decision based on MLLM

In this experiment, we explored the role and necessity of
CoT in driving decision-making by comparing the outcomes
of CogVLM with and without the utilization of CoT. In the left
panel of Fig 8, the model was guided using the thought process
described in Sec III-B. This approach allowed the model to
effectively integrate and process the information deduced from
the thought chain, accurately identifying the vehicle’s lane and
making the correct driving decisions. This demonstrates the
significant role of CoT in aiding the model to assimilate and
handle complex information.

In contrast, in the right panel of Fig 8, the model was tasked
to generate decisions directly without the assistance of CoT.
The results indicated a marked lack of logic in the model’s
performance due to the broad gap between task requirements
and textual information. In the absence of CoT, the model
failed to correctly identify the vehicle’s lane and erroneously



Prompt:
Please give a firm decision as a driver.

The vehicle is in the oncoming lane and the light is green. Traffic should go 

straight.

CogVLM uses CoT :

The traffic lights are red, and you need to stop.

Prompt:
Please give a firm decision as a driver.

CogVLM without CoT:

Decision

Fig. 8: The left case example shows CogVLM making decisions about subsequent vehicle actions using CoT, while the right
case example is without using CoT. Purple font indicates correctly understood answers, and red fonts indicate misinterpreted
answers.

interpreted the traffic signals, leading to incorrect driving
decisions. This outcome further underscores the importance of
CoT in enhancing the model’s ability to comprehend complex
scenarios and make rational decisions.

The juxtaposition of these two cases clearly illustrates the
value of CoT in improving the quality of decisions in complex
situations. CoT not only enhances the accuracy of the model’s
decisions but also increases the interpretability of the decision-
making process, which is crucial for the safety and reliability
of autonomous driving systems. Therefore, our experimental
results robustly validate the necessity and effectiveness of
employing CoT in the decision-making process of autonomous
driving.

E. Simulation Experiment

We compared the effectiveness of our proposed method with
Reinforcement Learning-based Planning (RL) and Model Pre-
dictive Control (MPC) in the Highway-env simulation environ-
ment [23], encompassing scenarios like highway, roundabout,
and intersection. In these environments, we designed multiple
complex real-world situations to assess the overall capability
of the system. In each of the three environments, we created 50
different traffic scenarios for extensive testing. We recorded the
failure probability, the probability of ineffective decisions, and
the average time to complete tasks, with results presented in
Table I. Subsequently, we selected some typical experimental
results for display and analysis in Fig 9.

Compared to MPC and RL, which require a foundational
environment for training, our method only needs context-based
learning to guide the model to produce the specified output
format, allowing it to complete tasks impressively. In the
experiments, the MLLM-based autonomous driving system,

TABLE I: The data in the table are all metrics where lower
values indicate better performance. ”Fail” represents the per-
centage of task execution failures, ”Inefficiency” indicates the
percentage of ineffective actions, and ”Average Time” denotes
the time taken to complete the task under normal decision
speeds, excluding decision-making time.

Scenario Method Fail Inefficiency Average Time

Intersection
RL 10.0% 6.0% 3.9s

MPC 4.0% 6.0% 4.0s
Ours 0.0% 2.0% 3.8s

Roundabout
RL 10.0% 8.0% 4.8s

MPC 6.0% 4.0% 5.2s
Ours 0.0% 2.0% 5.1s

Highway
RL 12.0% 8.0% 18.2s

MPC 6.0% 4.0% 19.1s
Ours 0.0% 2.0% 22.3s

by evaluating surrounding vehicles, distances, and traffic con-
ditions, used a thought chain for deep logical reasoning to
determine the safest and most effective overtaking path. As
shown in Table 1, our method outperforms others in terms
of fewer failures and ineffective actions. While RL showed
the best speed in Roundabout and Highway scenarios, it also
led to a high number of failures. Our method accurately
predicted the surrounding driving conditions at the no-signal
intersection, thereby saving driving time more effectively than
other methods.

We also selected some classic cases for display in Fig 9, pro-
viding a detailed comparison of our method against traditional
methods. The MLLM-based autonomous driving method bet-
ter predicts the surrounding environment. For example, in
the intersection scenario, our method correctly predicted the
distance of oncoming traffic, accelerating in advance to merge
into the lane. In the highway scenario, our method preemp-



Ours
R
o
u
n
d
ab
o
u
t

RL MPC
In
te
rs
ec
ti
o
n

H
ig
h
w
ay

Fig. 9: Our method compared with RL and MPC in three scenarios: roundabout, intersection, and highway. In these examples,
RL, motivated by time incentives, led to overly aggressive driving and resulted in rear-end collisions. MPC, on the other hand,
was unable to predict many uncommon situations, leading to task failures.

tively chose a lane without vehicles for lane changing. In
contrast, RL, driven by the incentive of driving time, led
to collisions in its haste to reach the target. MPC unable
to generalize some uncommon situations, like sudden lane
changes in the roundabout scenario or slowing down of the
front vehicle to yield in the intersection scenario, resulting
in collisions. In the highway scenario, MPC made many
unnecessary actions due to premature predictions.

V. DISCUSSIONS

A. Capabilities of MLLM in Autonomous Driving

Integrating MLLMs into Autonomous Vehicles is a promis-
ing research direction. Large Language Models have demon-
strated strong capabilities in information storage and logical
reasoning, essential for the future development of artificial
intelligence. In this paper, we conducted comprehensive exper-
iments and explorations of CogVLM in autonomous driving
scenarios. The results show that CogVLM surpasses existing
autonomous driving capabilities in areas like scene understand-
ing, prediction, and decision.

In dealing with corner cases, CogVLM leverages its ad-
vanced understanding abilities to accurately assess and pre-
dict the surrounding environment. The model also possesses
robust reasoning capabilities, enabling it to infer future move-
ment trends of objects based on their potential motives, a
feature lacking in traditional methods. As demonstrated in
Section IV-B, the model can judge pedestrian movement

tendencies by combining surrounding traffic conditions and
pedestrian actions.

The superiority of MLLMs-based AD systems in terms of
interpretability and generalization capabilities stands out in
comparison to other existing models. Traditional AD algo-
rithms are predominantly black-box models, which means they
suffer from a lack of transparency in their internal processes.
This not only makes it challenging to understand and interpret
the decision-making process of the algorithms but also often
limits their adaptability in unknown or changing environments.
However, MLLMs, such as CogVLM, demonstrate distinct
characteristics.

In experiments, the CogVLM model has shown remarkable
proficiency in completing complex tasks with just minimal
fine-tuning using a small dataset. This rapid adaptation to
new tasks highlights its exceptional generalization capabil-
ities. More importantly, CogVLM provides clear logic and
reasoning in every step of its decision-making process. This
interpretability is crucial for AD systems, as it not only
enhances the trust of developers and users in the system but
also offers valuable insights for ongoing improvement of the
system.

Furthermore, the transparency and adaptability of MLLMs
enhance their reliability in dealing with complex real-world
scenarios. Compared to traditional AD algorithms, MLLMs-
based systems are better at understanding and processing lin-
guistic information, which is vital for interaction and decision-



making in AD scenarios. Therefore, this type of system is
likely to play an increasingly significant role in the future
development of AD technologies.

B. Limitation of MLLM in Autonomous Driving

However, in our experiments, we identified several short-
comings of MLLMs in AD and proposed some potential
improvements.

Model Inference Speed: AD systems often require
decision-making inferences to be made in an extremely short
time. However, AD systems based on MLLMs often take
several seconds or even tens of seconds to produce the correct
inference, which is intolerable. For Autonomous Vehicles, text
upsampling is often unnecessary. The text output process of
MLLMs not only involves significant computational power
loss but also information loss. Therefore, if MLLMs are
to be deployed in autonomous vehicles, it might be worth
considering replacing the upsampling layer of MLLMs to
make them direct output vectors with control instructions.

MLLMs Illusion: Although in this paper, we have been
trying to solve the illusion problem of the model through
finetuning and contextual learning, as shown in Section IV-A,
the model still produces erroneous outputs. The issue of model
illusion is a challenging problem in the field of NLP. In the
future, this could be mitigated by designing effective risk
control models and self-checking structures to keep the harm
caused by illusions within an acceptable range.

Spatial Continuity Reasoning: In the technology of au-
tonomous vehicles, the capability for temporal linear rea-
soning of three-dimensional information is crucial, a feature
currently absent in MLLMs. Autonomous driving necessitates
an accurate understanding of the surrounding environment,
including spatial location, object motion, and other three-
dimensional information, as well as the ability to predict the
changes of these factors over time. Existing MLLMs, however,
are primarily adept at processing one-dimensional text and
two-dimensional image data, falling short in addressing the
complexities of three-dimensional spatial data.

Lack of Relevant Datasets: Although there are many large-
scale autonomous driving datasets available [52], [53], they
are not directly suitable for adaptation in AD with LLMs. For
instance, how to generate datasets for instruction tuning and
designing instruction formats based on AD datasets are still
under-explored. The generation of a suitable instruction tuning
dataset for MLLMs based on autonomous driving datasets
is an area that remains underexplored. This involves the
understanding and transformation of non-textual information
in AD datasets into a format that can be processed by LLMs,
while maintaining the authenticity and practicality of the
data. Additionally, relevant datasets could also aid a series
of downstream tasks dependent on VLMs. For instance, in
autonomous driving, a Vision-Language Model (VLM) can
aid in enhancing scene understanding, decision-making, and
predicting the behaviors of other vehicles and pedestrians.

VI. CONCLUSION

This paper demonstrates that MLLMs can effectively serve
as decision-making agents in AD systems. We introduced a
new framework deployed on platforms with computing power
comparable to Autonomous Vehicles. Focusing on the per-
formance of MLLMs in scene understanding, prediction, and
decision, we conducted extensive experiments in multimodal,
few-shot, and complex scenarios, clearly displaying the signifi-
cant advantages of AD systems enhanced by MLLMs. Further-
more, this paper delves into the strengths and weaknesses of
existing methods and proposes detailed prospects and methods
for future improvements. Our approach provides the first step
towards developing safe, few-shot, locally deployable, and
interpretable MLLM-based AD systems. We aspire for it to
serve as an inspiration for future research in this field.
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