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Abstract—The aviation industry relies on scheduled mainte-
nance performed on aircraft engines, which ensures safety but
incurs significant costs during routine inspections. Traditional
preventative maintenance may introduce issues during inspec-
tions, leading to delays and cancellations. Predictive maintenance,
powered by edge computing, offers a more efficient solution to
predict engine failures, optimize schedules, and enhance safety.

This paper explores the development and evaluation of a
predictive model based on the Gradient-Boosting Regression
Tree (GBRT) algorithm for turbofan engine prognostics. Our
study uses a synthetic dataset to evaluate the performance
of the proposed model through various external conditions
and internal configurations. Through this analysis, we compare
our model’s performance to existing solutions and propose a
new benchmarking metric, Margin-Adjusted Reliability Score
(MARS), to better assess the applicability and effectiveness of
predictive maintenance models in real-world scenarios.

Index Terms—Aircraft, turbofan engine, predictive mainte-
nance, edge computing, fault forecasting, time series data

I. INTRODUCTION

Regularly scheduled engine maintenance is a standard prac-
tice in the aviation industry due to the high cost of failure
and low error tolerance. However, it is expensive as it oc-
curs regardless of the engine’s actual condition. Preventative
maintenance, while reducing failure risks, can introduce new
mechanical issues during inspections, leading to costly flight
delays, diversions, cancellations, and accidents. For instance,
a single flight cancellation can cost an airline about $140K,
while each hour of delay costs around $17K [1].

Advancements in edge computing and the Industrial Internet
of Things (IIoT) enable a shift from preventative to predictive
maintenance, enhancing uptime, cost efficiency, and safety
[2]. Predictive maintenance starts with continuous engine
monitoring using sensors [3] which collect data on parameters
like temperature and vibration. The data, combined with
off-board operational information, is analyzed by machine
learning models to detect anomalies and predict failures [4].
The resulting insights guide maintenance scheduling to ensure
safe and continuous aircraft operation. For instance, predictive
maintenance has helped Boeing 787 reduce flight delays and
cancellations by 30% and unscheduled removals by 20% [5].

However, engine prognostics remains challenging due to
data ownership disputes between engine manufacturers and
commercial consumers, stringent regulatory requirements by
the Federal Aviation Administration (FAA), and the techni-
cal limitations of predictive models [5]. Crucially, effective
models need data from failed components, but obtaining such
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Fig. 1. A succinct overview of our structured methodology for developing a
prediction framework to inform turbofan engine fault prognostics. It includes
three main research questions (RQs) related to performance behavior (top-
left), performance comparisons (top-right), and performance benchmark ex-
ploration (bottom-right). RQ1 examines how the performance of our proposed
method varies relative to the different operating conditions in the data and
under different feature engineering conditions. RQ2 compares the performance
of our prediction framework to other methods used for this task. RQ3
examines current performance benchmarks and explores a new benchmarking
framework that better addresses the needs of the problem.

data requires allowing engines to fail [6]. Even models with
high accuracy in controlled settings may struggle in real-world
applications due to these constraints [7].

To address the scarcity of real-world failure data, re-
searchers rely on simulations to generate synthetic data for
developing and testing prognostic models. This study uses a
novel dataset from the National Aeronautics and Space Ad-
ministration’s (NASA) Ames Prognostics Center of Excellence
[8]–[10], which simulates run-to-failure trajectories for a fleet
of aircraft engines under realistic flight conditions [11]. This
dataset is a valuable resource for studying engine degradation
and failure prediction for developing predictive models.

The above dataset has inspired numerous publications
proposing various turbofan engine prognostics algorithms,
many using neural networks. However, assessing progress is
challenging due to the lack of uniform benchmarking metrics,
inconsistent sub-datasets, and varying evaluation environments
across studies [12]. A standardized performance framework for
benchmarking these approaches is still needed.

Research Questions. Our research is guided by three primary
questions: (i) How does the performance of the proposed
method vary under different feature engineering conditions



and operating conditions within the sub-datasets (RQ1)? (ii)
How does the proposed algorithm compare to other existing
solutions (RQ2)? And finally, (iii) how can we assess the
applicability of these solutions for turbofan engine prognostics
and predictive maintenance (RQ3)?
Contributions. In this study, we develop a method using
the Gradient-Boosting Regression Tree (GBRT) algorithm for
turbofan engine prognostics, analyze its performance, compare
it with existing algorithms, and use the insights gained to
inform the creation of a new benchmarking framework that
evaluates suitability based on performance accuracy and fault
detection timeliness. Our specific contributions are as follows:

• We propose a predictive model for turbofan engine prog-
nostics that utilizes the GBRT algorithm to estimate the
Remaining Useful Life (RUL) of aircraft turbofan engines
(Section IV).

• For RQ1, we test the prediction accuracy and timeliness
of our method across different feature dimensionalities
and loss functions to highlight how to achieve the best
prediction accuracy and timeliness under different oper-
ating conditions and fault scenarios (Section V-A).

• For RQ2, we compare the prediction accuracy and
timeliness of our method with other benchmark so-
lutions, including ConvGAT [13], FCDAE-CNN-LSTM
[14], Support Vector Machine (SVM) [15], Multi-Layer
Perceptron (MLP) [15], Deep Belief Network (DBN)
[15], Long Short-Term Memory (LSTM) [16], and Deep
Convolutional Neural Network (DCNN) [17] (Section
V-B).

• For RQ3, we develop an evaluation framework that
captures the real-world applicability and effectiveness of
future solutions (Section V-C).

The rest of this paper is organized as follows: Sec. II reviews
related work. The experiment datasets and hardware configura-
tion are detailed in Sec. III. Extensive experimental results are
shown in Sec. IV. We finally present our detailed discussions
in Sec. V, and Sec. VI concludes the entire paper.

II. RELATED WORK

The field of IIoT engine prognostics is hindered by the
lack of common datasets, which limits researchers’ ability
to compare solutions effectively. To address this, Saxena and
Goebel established a prognostics data repository in 2008 [12].
Since then, several prognostics datasets have been published
and widely used globally. Five of these datasets were generated
using the Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) tool, which simulates realistic turbofan
engine data, allowing for fault injection and varying degrees
of degradation to support engine prognostic algorithms [11].
The first C-MAPSS dataset was created for a 2008 PHM
Society conference data challenge, and subsequent datasets
with varying complexity have since been released and utilized
in publications [12]. Here, we discuss three primary categories
of prognostic models identified in the literature [12].

(1) Neural Network-Based Methods. These methods trans-
form engine trajectory data into a multidimensional feature

space, using corresponding RUL values to label feature vec-
tors. Supervised learning is then applied to map feature vectors
to RUL. Recent advancements include a multi-dimensional
attention mechanism combined with a feature-sequence di-
mensional convolution network, which captures interactions in
feature dimensions and temporal sequences, improving RUL
prediction accuracy on datasets like NASA’s turbofan engine
data and XJTU-SY [18]. Hybrid deep learning models, such as
Convolutional Long Short-Term Memory (CNN-LSTM) [19]
and FCDAE-CNN-LSTM [14], have also gained popularity.

(2) Health Index-Based Methods. These methods map
sensor measurements to a health index for each training
unit, which is then linked to RUL. Recent advancements
focus on detecting system degradation using deep learning
models. For example, [20] combines deep belief networks with
self-organizing map neural networks to build a health index
that captures correlations between multi-component systems,
significantly improving RUL prediction.

(3) Similarity-Based Matching. These methods create a
library of system instances with known failure times. For a
test instance, similarity with library instances is evaluated to
estimate and aggregate RUL. Recent advancements include
integrating autoencoder architectures and failure mode-specific
metrics to enhance accuracy. For example, [21] uses a classifier
to identify the failure mode and guide RUL prediction.

The Gap in Previous Work. Despite the extensive body
of literature on turbofan engine prognostics, significant gaps
remain. One major issue is the inconsistency in performance
benchmarking which makes it difficult to effectively compare
results across different studies. Additionally, there are often
differences in the datasets chosen for building these prognostic
models. Researchers have advised that future work should
focus on establishing standardized performance benchmarking
and datasets to align the field’s progress [12].

III. EXPERIMENT SETUP

A. Experiment Tools

C-MAPSS is a MATLAB and Simulink-based tool designed
to simulate a large commercial turbofan engine in the 90K lb
thrust class. It operates in diverse scenarios, including altitudes
from sea level to 40K ft, Mach numbers from 0 to 0.90, and
sea-level temperatures from -60 to 103 degrees Fahrenheit.
C-MAPSS also features a power management system for
simulating engine operation across various thrust levels under
different flight conditions [11].

B. Dataset Description

The studied dataset, the Turbofan Engine Degradation Sim-
ulation dataset, generated using C-MAPSS and detailed in
[11], includes sensor measurements from multiple engines
throughout their usage history. It is designed to support the
development of algorithms for predicting engine RUL [11].

This dataset is organized into n × 26 matrices, where n
represents the number of engine cycles per trajectory. Each
row captures the parameters measured during that cycle: the
first column indicates the engine/trajectory number, the second



the cycle number, columns three through five the operational
settings, and columns six through twenty-six the engine sensor
measurements, as shown in Fig. 2.

Total Air 
Temperature 

Sensors

On-engine 
Pressure 

Transducer 

Temperature 
Sensors

Thermocouple 
Sensors

High 
Temperature 

Pressure

Digital 
Pressure 
Transducer 

Speed and Torque 
Sensors

Fan Combustor N1 LPT

LPC HPC N2
HPT

Nozzle

Fig. 2. The overview of the simulated engine and sensor measurements. On
the bottom left is a high-level diagram of the engine simulated by C-MAPSS,
and to the right is the list of sensor measurements included in the C-MAPSS
generated dataset. Note that LPC stands for low-pressure compressor, HPC
stands for high-pressure compressor, and LPT stands for low-pressure turbine.
Different types of engine sensors are pictured on the top left.

Specifically, the full dataset consists of four sub-datasets,
each differing in fault modes and operating conditions, as
shown in Table I. FD001 sub-dataset simulates High Pressure
Compressor (HPC) degradation under one operating condition
(sea level). FD002 sub-dataset also simulates HPC degrada-
tion but across six operating conditions. FD003 sub-dataset
simulates both HPC and fan degradation with one operating
condition, while FD004 is the most complex, simulating both
fault modes across six operating conditions. Each sub-dataset
includes a training set, a testing set, and corresponding ground
truth RUL values for the testing data.

FD001 FD002 FD003 FD004
Training Trajectories 100 260 100 249
Testing Trajectories 100 259 100 248

Operating Conditions 1 6 1 6
Fault Modes HPC HPC HPC & Fan HPC & Fan

Table I. Dataset details. Number of training and testing trajectories,
operating conditions, and fault modes in each of the FD001, FD002, FD003,

and FD004 sub-datasets.

The training and testing datasets consist of operational data
from multiple engines over their life cycles. In the training set,
each engine’s data ends when the health index reaches 0. In
the testing set, data is truncated before engine failure, aiming
to predict the RUL for each engine trajectory.
C. Hardware

The experiment hardware includes a variety of sensors
mandated for engine installation by FAA [5], some of which
are depicted in Fig. 2. However, C-MAPSS generated data
assumes sensors and actuators to be ”ideal,” meaning they have
no dynamics, computational time delays, errors, or biases [22].

IV. EXPERIMENTAL DESIGN AND RESULTS

A. Proposed Methodology

While deep learning models dominate this field, exploring
GBRT presents an intriguing alternative that could provide
new insights into a less-studied class of algorithms.

GBRT is an ensemble learning technique that sequentially
adds decision trees, each learning from the residuals of the
previous ones to minimize error. The process starts with a
base tree and adds trees that correct prior errors, scaled by
a learning rate to prevent overfitting. The final model, a
weighted combination of all trees, captures complex nonlinear
relationships between engine sensor data and RUL values [23].

B. Data Preparation

As shown in Fig. 3, considering the impact of diverse oper-
ating conditions on turbofan engine degradation in aircraft, we
use K-means clustering [24] to explore sensor measurement
variations under different conditions. It is applied to each sub-
dataset using three operational parameters, including Altitude
(OPS1), Mach Number (OPS2), and Throttle Revolver Angle
(OPS3). This process segments the data into distinct groups
based on operating parameter combinations. Sub-datasets
FD001 and FD003, with a single operating parameter, produce
one cluster each, while FD002 and FD004, with three different
parameters, yield six clusters each. These combinations are
added as re-engineered features in the data.
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Fig. 3. Prediction framework for the proposed GBRT-based algorithm. Data
is first clustered by operational settings to identify operating conditions, which
are then incorporated as new features. Ground truth RUL values are modeled
for non-target rows using a piecewise function and included as an additional
feature. The data is normalized to mitigate noise. Subsequently, the dataset
undergoes feature selection and polynomial feature mapping to create two
additional versions of the dataset. For each version, training data is used
to optimize the Gradient Boosting Regression parameters. After parameter
tuning, the model predicts RUL on the test data.

Piecewise RUL Target Function. Ground truth RUL values
for the testing set are available only for the final engine
cycle, while the training set has no RUL values. To im-
prove prediction accuracy without a physics-based model, we
use an approximate degradation model. A piece-wise linear
degradation function, as recommended in previous studies
[25]–[29], is employed to cap RUL values and capture non-
linear degradation after specific usage thresholds (Fig. 4). This
method prevents RUL overestimation and more accurately
reflects actual degradation patterns.
Data Normalization. The diversity of operating conditions
leads to varying sensor values, making data normalization
essential. We normalize the feature data using Eq. 1.

X
′
i =

Xi − µ

γ
(1)
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Fig. 4. Piecewise engine degradation function. In segment A, the Remaining
Useful Life (RUL) remains constant, indicating that the health index stays
stable. At point B, a fault develops, marking the start of degradation. As
the fault evolves in segment C, the health index declines and RUL decreases
accordingly. Finally, at point D, the health index reaches zero, indicating
complete degradation where RUL is zero.

Feature Engineering. We apply Principal Component Anal-
ysis (PCA) to create a feature-reduced version of the data,
preserving 95% correlation. To explore subtle relationships
between features, we also use polynomial feature mapping
for feature expansion. Given the variance in the number of
sensors across different engines, it is crucial to understand
how the algorithm responds to changes in dimensionality.

C. Evaluation Metrics

The variability in aviation industry needs and evolving
regulatory standards complicates benchmark establishment,
making it difficult to compare results across studies and
slowing the field’s progress [12]. Despite these challenges, we
prioritize three key considerations in selecting our metrics.
We adopt the scoring method recommended by the dataset
developers in [11], referred to as ”Score”, defined below.

Score =

{ ∑n
i=1 e

− d
13 − 1 for d < 0∑n

i=1 e
d
10 − 1 for d ≥ 0

(2)

where n refers to the number of trajectories and d is the dif-
ference between the estimated RUL and the true RUL. ”Score”
penalizes late failure predictions more heavily than early ones,
aligning with the risk-averse nature of the aerospace industry.

However, it has limitations, such as sensitivity to outliers
and bias towards algorithms that underestimate RUL. To
address this, we explore additional prognostic evaluation meth-
ods, guided by the framework in [30], [31], which recommends
assessing prediction accuracy, timeframe, maintenance of per-
formance levels relative to RUL, and accuracy at different
times. These considerations helped to select from commonly
used metrics in related literature for easier comparison.

Root Mean Squared Error (RMSE), shown in Eq. 3, comple-
ments ”Score” by equally penalizing early and late predictions
and measuring the accuracy of both target and step-wise RUL
predictions [13]–[17], [25], [32]. We incorporate RMSE to
assess performance.

RMSE =

√√√√ n∑
i=1

d2

n
(3)

D. Experiment Results

We produce three variations of the GBRT algorithm: GBRT
I uses the data without feature engineering, GBRT II uses
feature-selected data, and GBRT III uses polynomial feature-
mapped data. Each model is tuned on the training data from
each sub-dataset to optimize the learning rate, number of
boosting stages, maximum depth of estimators, minimum
samples required to split a node, minimum samples per leaf,
number of features for the best split, and the fraction of
samples for fitting base learners. After tuning, the models are
tested on the corresponding testing data.
Loss Functions. Each model is trained and tested four times
using different loss functions: squared error (E2), huber (h),
and two versions of quantile (Q) loss with α = 0.45 and
α = 0.43. Quantile loss is used to improve scoring by better
aligning the loss function with scoring penalties. In some
cases, changing the loss function slightly increases RMSE but
significantly improves the score. Therefore, the loss functions
are selected primarily based on their resulting scores rather
than RMSEs. Table II shows the loss functions used to achieve
these results.

Table II. The value of loss functions.
FD001 FD002 FD003 FD004

GBRT I Qα=0.43 Qα=0.45 Qα=0.43 E2

GBRT II E2 E2 E2 Qα=0.45

GBRT III h Qα=0.45 h h

As shown in Fig. 5, GBRT I produced the best RMSE
values on all sub-datasets except FD002, where GBRT III
slightly outperformed it with an RMSE of 13.35 compared
to 13.64. GBRT II had slightly higher RMSEs than GBRT I
and GBRT III. In terms of ”Score”, GBRT I had the best score
on FD001, while GBRT III outperformed on FD002, FD003,
and FD004, indicating that feature mapping may improve
prediction timeliness in more complex operating conditions.

V. OBSERVATIONS AND DISCUSSIONS

In this section, we present and summarize our answers to
RQ1, RQ2, and RQ3, and discuss the key observations.

A. Observations and Discussions for RQ1

In analyzing performance across different sub-datasets (Fig.
5), it is evident that the complexity of operating conditions
significantly impacts the algorithm’s performance. On sub-
dataset FD001, which simulates a single operating condition
and fault mode (HPC degradation), GBRT I, trained on the
original set of features, yields the best RMSE and score. GBRT
II, trained on the feature-selected dataset, produced the highest
RMSE of 15.0, but scored better than GBRT III. This suggests
that in simpler data like FD001, the relationships between
sensor measurements and RUL are represented effectively
without the need for additional feature mapping to enhance
the model’s understanding of degradation patterns.

FD002 simulates a more complex scenario with six operat-
ing conditions, leading to higher RMSE for GBRT I and GBRT
II, indicating more complex degradation patterns. GBRT III
has a slightly lower RMSE than GBRT I (13.35 vs. 13.64)



FD001 FD002 FD003 FD004
GBRT I 12.04 13.64 11.37 12.32
GBRT II 15 18.06 13.06 16.64
GBRT III 13.16 13.35 11.86 12.39
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Fig. 5. The RMSE for each version of the algorithm (GBRT I: original features, GBRT II: feature selection, GBRT III: feature mapping) are displayed to
the left, with the corresponding ”Score” values (see Eq. 2) displayed to the right. Fault modes (HPC degradation, HPC and fan degradation) and the number
of operating conditions for each sub-dataset are indicated between (a) and (b). The best RMSE and ”Score” values are highlighted in red.

and achieves a better score (1382.19 vs. 1424.28). GBRT III’s
superior performance suggests that with multiple operating
conditions, feature expansion better captures complex sensor-
RUL correlations, improving RUL predictions.

FD003, simulating one operating condition and two fault
modes (HPC and fan degradation), is less complex. Similar to
FD002, GBRT I has a slightly better RMSE (11.35 vs. 11.71
for GBRT III), but GBRT III achieves a significantly better
score (297.79 vs. 689.05). These results suggest that with mul-
tiple fault modes, feature expansion improves the timeliness
of RUL predictions while maintaining high accuracy.

FD004, the most complex sub-dataset with six operating
conditions and two fault modes, shows GBRT I with a slightly
better RMSE (12.12 vs. 12.30 for GBRT III). However, GBRT
III achieves a better score (2360.96 vs. 2502.38). These results
suggest that in complex scenarios with multiple operating
conditions and fault modes, feature expansion helps capture
more intricate degradation patterns, improving scoring while
maintaining competitive accuracy.

B. Observations and Discussions for RQ2

We then compare the performance of our methods with
those from existing literature (Fig. 6). We selected several re-
cently published methods, including ConvGAT [13], FCDAE-
CNN-LSTM [14], as well as SVM-based, MLP-based, DBN-
based [15], LSTM-based [16], and DCNN-based methods [17].

Comparing the value of RMSE, both GBRT I and GBRT
III demonstrate competitive performance: GBRT III achieves
the lowest RMSE of 13.4 on FD002, and GBRT I achieves
the lowest RMSE of 12.3 on FD004. On FD001 and FD003,
the ConvGAT method produces the lowest RMSEs of 11.3
and 11.0, respectively [13], but GBRT I performs comparably
with RMSEs of 12.0 for FD001 and 11.4 for FD003. This
indicates that GBRT I is as effective as some neural network-
based methods in prediction accuracy. Additionally, while
other methods show significant accuracy disparities between

FD001/FD003 and FD002/FD004, both GBRT I and GBRT III
maintain consistent accuracy across all datasets, demonstrating
their adaptability to varying degradation patterns.

Comparing the ”Scores,” we observe that while neither
proposed model achieves the best scores, GBRT III performs
competitively on FD004 and FD002. On FD004, GBRT III’s
score of 2016.4 is second only to ConvGAT’s 1231.17 [13]. On
FD002, both GBRT I and GBRT III score competitively, with
scores of 1424.28 and 1382.19, similar to the FCDAE-CNN-
LSTM method’s 1466.03, performing better than the other
methods. However, ConvGAT still achieves a significantly
better score of 771.61 on FD002.

Overall, GBRT I and GBRT III achieve competitive accu-
racy across all four sub-datasets but only comparable scoring
on FD002 and FD004. Since FD002 and FD004 simulate six
operating conditions, this suggests that GBRT III is well-suited
for predicting degradation patterns in complex conditions but
struggles with timely predictions on the simpler dataset.

C. Observations and Discussions for RQ3

The commonly used scoring function in Eq. 2 compares
turbofan engine prognostic solutions but lacks insight into
critical performance aspects. Since it sums each trajectory’s
prediction error, scores on datasets with more trajectories,
like FD002 and FD004, are inherently worse than those
on smaller datasets. Besides, while this score accounts for
accuracy weighted by timeliness, it doesn’t explicitly show
how these factors interact. Both accuracy and timeliness are
crucial for selecting an optimal solution, yet a comprehensive
benchmark addressing both remains undeveloped.

To address this, we introduce the Margin-Adjusted Re-
liability Score (MARS), defined in Eq. 4. MARS offers a
framework for evaluating how effectively an algorithm per-
forms within a specified margin of maintenance anticipation.

MARS : s(b1, b2) =
1

n

n∑
i=1

I(b1 ≤ di ≤ b2) (4)



FD001 FD002 FD003 FD004
GBRT I (Proposed) 525.25 1424.28 1166.22 2327.79
GBRT III (Proposed) 671.12 1382.19 931.47 2016.4
ConvGAT 197.43 771.61 235.26 1231.17
FCDAE-CNN-LSTM 209.44 1466.03 205.07 2338.9
SVM 7703 316483 22541 141122
MLP 561 14027 480 10444
DBN 418 9032 442 7954
LSTM 338 4450 852 5550
DCNN 274 10412 284 12466
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Fig. 6. Comparison of the performance of the GBRT I and GBRT III methods with various methods in previous literature. The values of RMSE for each
algorithm are displayed in (a), with corresponding score values (see Eq. 2) displayed in (b). The best RMSE and ”Score” values are highlighted in red.

where di is the difference between the predicted RUL and the
true RUL for the ith trajectory, b1 is the lower bound, and b2 is
the upper bound of the margin. MARS evaluates the reliability
of the algorithm in predicting RUL within a specified margin,
with scores closer to 1 indicating higher reliability, and scores
closer to 0 indicating lower reliability.

MARS defines a margin for maintenance anticipation and
evaluates algorithm performance within that margin, penal-
izing late predictions while providing a clear, standardized
measure of timeliness and accuracy. For instance, a margin
might allow the true RUL to be five below or ten above the
predicted RUL (b1 = −5, b2 = 10). Ideally, maintenance is
deferred until the predicted RUL reaches 15 for economic
efficiency but is performed before it drops to 5 for safety. The
margin can be adjusted to allow more error in early predictions
than in late ones, balancing safety with economic efficiency.
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Figure 7 shows the MARS results for GBRT II and GBRT
III, evaluated with margin settings of b1=-5 and b2=10, 15,
and 20. Comparing MARS values instead of ”Score” clarifies
whether GBRT III’s superior performance is due to better

accuracy or improved timeliness. While ”Scores” suggest
better performance on FD001 and FD003, MARS provides a
more nuanced view. Even within the narrowest margin, GBRT
III consistently scores 0.4 or higher, with its best performance
on FD002—a distinction less clear with conventional scoring.
Conversely, GBRT II performs its worst on FD002, a detail
not evident from score values alone. MARS thus offers a
more effective assessment of timeliness and accuracy across
scenarios for consistent comparisons.

VI. CONCLUDING REMARKS

In this study, we propose a GBRT-based model and the
MARS evaluation metric for turbofan engine fault prognos-
tics in aircraft, demonstrating the effectiveness of enhancing
predictive maintenance. Our analysis shows how training the
model on original, feature-selected, and feature-mapped sensor
data impacts predictive accuracy across both simple and com-
plex operating conditions. We found that GBRT I (original
features) and GBRT III (feature mapping) models achieve
competitive accuracy across all scenarios, excelling in complex
cases (FD002 and FD004). However, their ”Score” indicate
that while accuracy is strong, prediction timeliness under
simpler conditions (FD001 and FD003) needs improvement.
Besides, our proposed MARS metric reveals critical differ-
ences that traditional scoring methods may overlook, offering a
more industry-relevant metric for evaluating predictive models
in real-world applications.
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