
Edge-Assisted Over-the-Air Software Updates

Arpan Bhattacharjee∗, Hamza Mahmood∗, Sidi Lu†, Nejib Ammar‡, Akila Ganlath‡, Weisong Shi∗
University of Delaware, DE, USA∗∗∗, William & Mary†, Toyota InfoTech Lab‡‡

{arpan,mhamza,weisong}@udel.edu, sidi@wm.edu, {nejib.ammar,akila.ganlath}@toyota.com

Abstract—The imperative transformation of future con-
nected vehicles into intelligent computing platforms necessitates
the implementation of Software-defined Vehicles (SDVs). SDVs
enable the progressive addition and upgrading of automotive
applications throughout the vehicle’s lifecycle, facilitated by
software Over-the-Air (OTA) update technology. However, the
exploration of OTA updates for automotive applications is
currently very limited. To the best of our knowledge, our work
is pioneering in implementing an edge-assisted framework for
automotive OTA updates. It meticulously considers the hetero-
geneity of vehicular software models and vehicle computing
units, varied communication distances, and diverse sizes of
vehicle clusters. We offer crucial insights based on pertinent
evaluation metrics, such as update latency, transmission band-
width, and successful rate, alongside an in-depth scalability
analysis. Our study employs three distinct sizes of fundamental
vehicle models: ResNet-18 (46.8 MB), ResNet-50 (102.5 MB),
and Faster R-CNN (175.2 MB). These models are employed to
evaluate the update performance across eight distance groups
ranging from 0 to 21 meters with a 3-meter gap. We also exploit
heterogeneous computing platforms to appraise the success
rate and execute comprehensive scalability analysis. This novel
approach significantly advances the current understanding and
implementation of OTA updates in the automotive community.

Index Terms—Software-Defined Vehicle (SDV), Edge Com-
puting, Software Over-the-Air (OTA) update, Autonomous
Vehicles and Vehicle Computing.

I. INTRODUCTION

A. Software Defined Vehicle (SDV)

SDV is an automobile with predominantly software-driven

capabilities and functionalities. It represents the ongoing

evolution of automobiles, shifting from being predominantly

hardware-oriented products to becoming electronic devices

on wheels with a strong emphasis on software integration

[1]. An extensive volume of software code has become an

integral part of modern luxury vehicles. Specific high-end

models now incorporate an astonishing 150 million lines

of code [2]. These lines are intricately woven throughout

many electronic control units (ECUs) and advanced sensors,

cameras, radar systems, light detection, and lidar devices

[3]. The convergence of three key trends—electrification,

automation, and connectivity—is revolutionizing customer

expectations, compelling manufacturers to increasingly rely

on software solutions to meet the evolving demands of the

market [3]. Consumers are increasingly drawn to software-

centric features encompassing advanced driver assistance

functionalities, cutting-edge infotainment systems, and in-

telligent connectivity solutions [4].

B. Software Over-the-Air (OTA) Updates

Software OTA updates refer to remotely updating and

upgrading software on devices, such as smartphones, IoT

devices, and more recently connected vehicles.

1) Traditional OTA Updates: Traditionally, OTA updates

provide a convenient and efficient way to deliver bug fixes,

security patches, feature enhancements, and other software

improvements to many devices without physical access

[7]. By wirelessly transmitting the updated software to the

target devices, OTA updates enable seamless and on-demand

software maintenance and ensure that devices run the latest

and most secure software versions. This mechanism is cru-

cial in enhancing software functionality, security, and user

experience while minimizing downtime and the need for

manual intervention in the update process. Table. I shows

a comparative analysis of three distinct approaches to OTA

updates in the context of Apple [5], Linux [6] and Tesla [7].

2) Automotive OTA Updates: The significance of OTA

updates has grown significantly in connected and au-

tonomous vehicles. These updates are crucial in delivering

new software features to vehicles without physical visits

to service centers. By leveraging OTA updates, vehicles

can seamlessly receive and install the latest software im-

provements, ensuring enhanced functionality and reliability

while eliminating the logistical challenges associated with

traditional maintenance procedures [8]. Furthermore, OTA

updates offer manufacturers flexibility and agility in swiftly

introducing new vehicle features and functionalities, effec-

tively addressing customer needs and market demands with

more significant efficiency [9]. These updates also enhance

performance by optimizing vehicle systems, improving fuel

efficiency, and fine-tuning autonomous driving capabilities.

In addition, they also bolster security measures by promptly

addressing vulnerabilities and safeguarding vehicles against

cyber threats while enhancing the consumer experience by

ensuring vehicles remain up to date with the latest software

features and improvements. This, in turn, elevates customer

satisfaction and extends the longevity of vehicles.

As cloud, edge, and vehicle computing technologies get

popular, they will likely play a pivotal role in enabling

efficient OTA updates from edge RSUs to vehicles. By bring-

ing computational resources closer to vehicles, cloud/edge

computing reduces latency and network congestion, en-

suring faster and more reliable updates [10]. RSUs with

edge computing infrastructure serve as local repositories

for update packages, minimizing the need for individual

18

2023 IEEE 9th International Conference on Collaboration and Internet Computing (CIC)

979-8-3503-3912-3/23/$31.00 ©2023 IEEE
DOI 10.1109/CIC58953.2023.00013

20
23

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

ol
la

bo
ra

tio
n

an
d

In
te

rn
et

 C
om

pu
tin

g
(C

IC
) |

 9
79

-8
-3

50
3-

39
12

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CI

C5
89

53
.2

02
3.

00
01

3

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARATIVE ANALYSIS OF OTA UPDATES BETWEEN APPLE, LINUX, AND TESLA.

Criteria Apple Linux Tesla
Update

Delivery
Mechanism

Distributed through Apple Software
delivery mechanism.

Utilize package management systems
like APT or DNF to deliver updates.

Tesla vehicles receive OTA updates
remotely initiated by the company.

Scope of
Updates

Updates include new features, bug
fixes, performance improvements, and

security patches

Primarily focus on software packages
and can include bug fixes, security
patches, and new package versions

Updates encompass various components
such as firmware, Autopilot system, and

infotainment features, enabling
continuous feature enhancements and bug

fixes

Emphasis on
Security

Updates are digitally signed and
verified to prevent tampering or

unauthorized modifications

Depends on the distribution and package
sources, with maintainers ensuring the

integrity of software packages

Digitally signed by the company,
ensuring the authenticity and integrity of

the software delivered to vehicles

User
Intervention

Requires minimal user intervention,
with automatic prompts and an

intuitive installation process

Requires user intervention, such as
running package managers or approving
updates, and may involve system restarts

Initiated remotely by the company,
reducing the need for user intervention

beyond confirming installation

Industry
Impact

Significant impact on the consumer
electronics industry, providing regular

updates and improving device
performance and security

Popularized the concept of OTA updates
in the open-source community, ensuring
software packages stay up to date with

bug fixes and security patches

Revolutionized the automotive industry,
allowing vehicles to receive new features,

enhancements, and bug fixes without
requiring physical visits to service

centers

Fig. 1. OTA Updates from Edge-RSU to SDN enabled Vehicles (OBU).

vehicle connections to remote servers. This localized storage

and processing optimize bandwidth utilization. Additionally,

edge computing enables the intelligent distribution of up-

dates based on location and criticality, improving efficiency.

Furthermore, edge computing enhances OTA update security

through authentication and verification within the trusted

edge environment [11]. Overall, edge computing empowers

RSUs to efficiently deliver OTA updates, improving reliabil-

ity, bandwidth utilization, and security. Fig. 1 showcases an

edge-vehicle OTA architecture, wherein the SDN controller

delegates control plane management to local controllers or

Edge-RSUs and end vehicle nodes. In this setup, the SDN

controller base station’s role is limited to forwarding new

software updates and policies to the Edge-RSUs, rather than

sending the entire updates and instructions to the vehicles

for individual update decisions. This decentralized approach

empowers Edge-RSUs and vehicle nodes to autonomously

handle their current software updates, enabling efficient and

streamlined OTA management within the network.

3) Motivation of Adopting OTA: Our primary motivation

to adopt OTA is as follows:

• Minimization of vehicle recalls and cost savings: OTA

updates significantly reduce the need for vehicle recalls,

resulting in substantial cost reductions for automakers.

• Timely updates beyond traditional locations: OTA up-

dates allow vehicles to be updated at various locations,

such as the owner’s home or workplace, eliminating the

need to visit dealerships or maintenance garages.

• Centralized software distribution: OTA updates enable

direct distribution of software to target vehicles without

the involvement of dealers and maintenance garages.

• Faster time to market: New software can be distributed

efficiently as needed without relying on customer vehi-

cle returns or scheduled maintenance.

• Mandatory updates for improved safety: Critical up-

dates, particularly safety-related ones, can be pushed

to vehicles without waiting for customer approval.

• Proven technology from the telecommunications in-

dustry: OTA updates have been widely adopted in

the telecommunications industry, providing users with

updated software through successful OTA mechanisms.

4) Challenges of Adopting OTA: The challenges of adopt-

ing OTA updates is as follows:

• Network Connectivity and Bandwidth: OTA updates

require stable and reliable network connectivity, partic-

ularly in areas with limited internet access. Bandwidth

limitations can lead to slow or failed updates.

• Compatibility and Fragmentation: Ensuring software

compatibility across different vehicle models, hardware

configurations, and software versions is challenging.

• Security Risks: OTA updates introduce potential se-

curity vulnerabilities, as they involve transmitting and

installing software over the air. Safeguarding against

unauthorized access, tampering and ensuring data in-

tegrity during the update process is crucial.

19

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

• Data Management and Storage: Efficiently managing

and storing the data generated by OTA updates, includ-

ing update histories, is essential.

• User Acceptance and Trust: Gaining user trust and ad-

dressing concerns about privacy, security, and potential

disruptions are essential for OTA update adoption.

C. Contribution of This Work

The core contribution of this work is in implementing

software OTA updates on the physical testbed and providing

actionable insights on the trade-off between updating differ-

ent sizes of software, diverse distances, successful rates, and

transmission bandwidth. We also conduct a comprehensive

scalability analysis on a group of heterogeneous computing

units and figure out their influences on the success of the

OTA update, latency, and bandwidth. Specific contributions

are listed as follows.

• To the best of our knowledge, this is the first work to

implement an edge-assisted framework for automotive

software OTA updates. It has the potential to advance

the current understanding and implementation of soft-

ware OTA updates in the automotive community.

• We offer crucial and unique insights based on pertinent

evaluation metrics, such as update latency, transmission

bandwidth, and successful rate. Evaluate the trade-

off between these metrics with varied communication

distances (up to 21 meters) and diverse sizes of vehicle

clusters with heterogeneous computing units for the in-

depth scalability analysis.

• We also explored and discussed the state-of-the-art

research efforts and works for automotive software OTA

updates in both academia and industry.

The rest of this paper is organized as follows: Sec. II

reviews the background and related work on OTA. The

building blocks of software OTA updates are presented in

Sec. III. Extensive experimental results are shown in Sec. IV

and finally we conclude the entire paper discussion in Sec. V.

II. BACKGROUND AND RELATED WORK

A. Theoretical Exploration

The motivation behind adopting OTA updates from edge

server-based Roadside Units (RSUs) to SDN-enabled ve-

hicles (On-Board Units or OBUs) stems from several key

factors. However, we will look into the advantages and

disadvantages of the cloud and fog/edge-based OTA before

diving deep into that.

1) Cloud based OTA Updates: The software updates

are recently pushed to the network cloud/edge/fog nodes

for further dissemination to the software-defined vehicles.

Automakers deploy software updates to the cloud, where

all connected vehicles can retrieve the latest software ver-

sions. These OTA updates can occur when the vehicles are

stationary or in motion. However, certain drawbacks are

associated with downloading updates from a remote cloud

data center [1]. Due to the distance between the vehicle

and the cloud, response times for downloading time-critical

updates may need to be faster. Moreover, transmitting critical

updates through globally connected channels exposes them

to security vulnerabilities [12].

2) Edge-based OTA Updates: In contrast, edge Com-

puting brings cloud functionality closer to data generation

sources. It involves deploying edge nodes directly connected

to cyber-physical devices like sensors and actuators. These

edge nodes near the data-generating devices can process data

locally, reducing response latency. Additionally, the edge

nodes are distributed and decentralized, ensuring a more de-

pendable and resilient system without a single point of fail-

ure [13]. Regarding OTA updates, edge computing outshines

cloud computing in several aspects. The primary advantage

of edge computing is it brings computing resources near to

the vehicles, enabling faster and more efficient delivery of

updates. By processing updates locally at the edge, edge

computing reduces latency, ensuring timely updates even in

time-critical scenarios [14]. Additionally, edge computing

optimizes bandwidth usage by distributing updates locally,

minimizing network congestion. It enhances reliability by

allowing updates to be processed even in intermittent or

unreliable network connectivity [15].

B. The Gap in Previous Work

OTA update technology plays an essential role in the

entire lifecycle of SDVs, spanning design, development,

manufacturing, and continuous usage over the vehicle’s lifes-

pan. Compared to conventional wired updates, the benefits

of OTA updates for automotive software are outlined in

[16], along with a high-level architecture for these updates.

However, this research needs more specific information

regarding the wireless medium, essential security mecha-

nisms, and other technical aspects. A study conducted by

multiple authors in [9], [17] has predominantly concentrated

on remote software updates for vehicles and related secu-

rity considerations. However, these studies would greatly

benefit from exploring scenarios involving local updates

performed within service centers and integrating advanced

update mechanisms such as parallel updates [18].

Idrees et al. [17] presented a system that facilitates OTA

updates by utilizing a Hardware Security Module (HSM)

for tasks such as data encryption, key management, and

ensuring data integrity across the wireless interface and all

Electronic Control Units (ECUs) in the vehicle. However,

it is essential to note that this implementation necessitates

the installation of an HSM on each ECU, leading to a

considerable escalation in costs associated with the system.

Therefore, careful consideration should be given to the cost

implications before implementing this approach. Nilsson et

al. [19] propose a system where automotive OTA updates

are facilitated by connecting the vehicle to a server via

an internet link. The authors highlight key security aspects

concerning data integrity and confidentiality in OTA updates

but do not describe the wireless network being used within

the network. In [20], a linear programming software update

20

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

scheme is proposed. The objective is to minimize handovers

when pushing OTA updates from fog nodes. In this work,

the fog node directly engaged all the vehicles available in its

communication range. Thus, this could overburden the fog

nodes and impact the performance of other delay-sensitive

applications deployed at the fog.

III. PROPOSED FRAMEWORK AND METHODOLOGY

A. Framework Description

We propose a two-phase system model for OTA update

dissemination in the SDV network. Let E = e1, ..., en
represent a set of n Edge-RSU units, and V = v1, ..., vi
represent a set of i vehicles, where n < i. In the first phase,

vehicles in the lower tier, which require periodic updates to

their application software, are involved. In the second phase,

strategically positioned Edge-RSU units broadcast software

updates to nearby vehicles based on their demands. Each

vehicle has OBUs and storage capabilities, allowing it to

install updates and relay them to neighboring vehicles. The

timely dissemination of newer versions of software is critical

to ensure software security and stability and delivering a

positive user experience across the vehicular network.

1) Network Model: The SDN network operates within

a routable networking environment. This network configu-

ration enables wireless connectivity among mobile nodes,

forming a self-configured and self-healing network without

a fixed infrastructure. As the network topology undergoes

frequent changes, the mobile nodes have the freedom to

move randomly. Each node functions as a router, responsible

for forwarding traffic to other designated nodes within the

network. In this context, we assume that the spectrum

assigned to vehicles is orthogonal, ensuring no collisions

between the connected nodes and edge units.

2) Adversarial Model: The adversary model consid-

ers the system’s Edge-RSU units (E) and vehicles (V).

The adversary, represented by functions AdvE(S,AE) and

AdvV (S,AV), can monitor and manipulate software up-

dates. The Edge-RSU adversary AdvE(S,AE) aims to com-

promise the updates’ integrity, security, or functionality. In

contrast, the vehicle adversary AdvV (S,AV) aims to evade

or bypass the security measures implemented by the Edge-

RSU units. They may intercept, modify, or distribute unau-

thorized updates, threatening the system’s security. Coun-

termeasures, represented by the function C(S,AE , AV),
can mitigate these risks by integrating cryptographic mech-

anisms, secure protocols, verification techniques, and in-

trusion detection systems. In this adversarial setting, the

objective functions OE(S,AE) and OV (S,AV) capture the

adversaries’ goals, seeking to maximize their advantage.

B. Quantitative Requirements of Automotive OTA Updates

1) Parameters: Cv is the computational capacity of ve-

hicle V. Sv is the storage capacity and Rv represents

communication range of vehicle V. Uf represents the size of

update file f. Additionally network topology and connectivity

information as well as security requirements are required.

2) Variables:
• Routing decisions: This defines the paths for update dis-

semination from Edge-RSU units to vehicles. Let Xve
be a binary variable indicating if vehicle V receives an

update from E (1 if true, 0 otherwise).

• Scheduling decisions: Scheduling helps to determine

the timing and order of updates for each vehicle. Let

Tv the time at which vehicle V receives the update.

• Resource allocation: Assigns available bandwidth B

and storage capacity S to vehicles for receiving and

processing updates. Let, Bv the bandwidth allocated to

vehicle V for receiving updates and Svu be the storage

space allocated to V for storing updates.

• Security measures: Specify the cryptographic algo-

rithms, authentication protocols, and integrity verifica-

tion techniques used during the update process.

3) Constraints:
• Bandwidth limitations: We have to ensure that the sum

of the updated file sizes transmitted to vehicles does not

exceed the available bandwidth. Bandwidth limitation is

shown here as:
∑

U−f∗C−ve ≤ B−v for all vehicles

v where U−f is the file size, C−v is the capacity and

B−v is bandwidth.

• Communication Range: Vehicles must be within the

communication range of an Edge-RSU unit to receive

updates. X−ve ≤ R−v for all vehicles V and Edge-

RSU E and X−ve be a binary variable indicating if V

receives an update from E.

• Computational and storage capacities: Updates must fit

within the computational and storage capacities of the

vehicles.
∑

U−f * X−v e ≤ C−v for all vehicles V

and
∑

U−f * Xve ≤ S−vu for all vehicles V.

• Security constraints: Apply authentication and autho-

rization during initial connection set up between the

Edge E and vehicle V to prevent unauthorized updates.

• Real-Time Constraints: Time-sensitive updates must be

delivered within specified deadlines. T−v ≤ deadline

for time-sensitive updates.

• Energy consumption: Limit the energy consumption of

vehicles during the update process.

4) Objective Function:
• Minimize the overall update time, which includes up-

date dissemination and installation time across all V.

• Minimize
∑

(T−v− t−e) for all vehicles v, where t−e
is the time at which the update is available at E.

C. Proposed OTA Update Mechanism

The OTA update mechanism facilitates the distribution of

software updates from Edge-RSU to vehicles in a wireless

network. In this scenario, the updates are packaged as

Docker images, which provide a lightweight and portable

containerization format. When the edge-RSU in our OTA

framework receives an update request, it is divided into

multiple modules for parallel processing and reliable com-

putation. The vehicle in our framework shown in Fig.

21

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Edge-RSU-Vehicle based Software Update Workflow

Fig. 3. Software Update Dissemmination using a Publish Subscriber
Paradigm.

2 is equipped with separate lightweight components (as

containers) for OTA update exposure and reception, ensuring

isolation and controlled sharing. Upon receiving the update

request, the edge node directs it to the relevant workflow

components (as containers) for processing. This includes

aggregating sensor data from multiple vehicles or traffic

infrastructure, ensuring data consistency, and applying fusion

algorithms to combine the data effectively. The fused data is

then passed to an object detection module, which identifies

the locations and types of objects based on the nature of the

data and the current load on the edge node. Furthermore, the

generation and consumption of updates between vehicles and

edge nodes are decoupled using a publish-subscribe subsys-

tem shown in Fig. 3. This subsystem employs a broker that

maintains a list of topics, allowing vehicles to publish their

sensor data through the broker. By leveraging this subsystem,

edge nodes can efficiently handle multiple workflows by

retrieving the necessary data from the appropriate containers,

reducing the overall workload. Both vehicles and edge nodes

subscribe to specific topics managed by the broker. When a

new update is received, the broker notifies the subscribers

using notification method tailored to the characteristics of

the update. The broker can be distributed across multiple

edge nodes for improved scalability and reliability.

1) Prepare the Update Server: Create an update server

as a centralized repository for hosting the latest software

updates. This server ensures the secure and reliable storage

and distribution of updates to the connected systems. The

updates are packaged as Docker images, encompassing the

essential components and configurations required for the

updated software. The server setup process includes con-

figuring the network settings and deploying the server.
2) Update Trigger Mechanism: The update trigger mech-

anism enables the OTA update server to initiate software

updates on vehicles in a wireless network. Let V be the set

of vehicles in the network, U be the set of software updates

available on the OTA update server, and t be the update

trigger function that sends a notification to the vehicles for

initiating the update process. The update trigger mechanism

can be represented as t: U → V . This function t maps each

software update u ∈ U to the set of V that need to receive

the update. When a new update u is available on the update

server, the update trigger function t is invoked to send a

notification to the vehicles in V , indicating that an update

is available and should be retrieved and installed.
3) Update Broadcasting and Deployment: The update

broadcasting and deployment mechanism involves the Edge-

RSU units broadcasting software updates to nearby (V).

These (E) units act as the distribution points for the updates

and are responsible for delivering the updates to nearby

vehicles (V). Each Edge-RSU unit e in E performs the

broadcasting function B(e, v), where v is a specific vehi-

cle in V , ensuring that the updates reach their intended

recipients. Additionally, the deployment function DF (e, V)
captures the process of an E deploying updates to a set of V.

By utilizing this mechanism, the E units efficiently broadcast

and deploy OTA updates, enabling connected vehicles to

receive and install the latest software updates.
4) Rollback and Recovery Mechanism: Implement a

mechanism for rollback and recovery in case of update

failures or system instability after updates. This mechanism

should allow for reverting to the previous software version

and recovering from potential issues introduced by the

updates. The rollback and recovery mechanism involves

monitoring the OTA update process and detecting failures

using the failure detection function F (t). When a failure is

detected (F(t) = true), the rollback function R(t) is invoked

to revert the software to the previous version U−previous.
5) Logging and Monitoring: Logging and monitoring

mechanism is crucial in overseeing the OTA update process.

It systematically records events and actions in a log file,

denoted by L. The log file captures essential information

about the software update process, including the sequence

of events and any notable actions taken. With each new event

E, the log file is updated using the logging function L(t) =

L(t − 1) ∪ E(t), where E(t) represents the event occurring

at time t. This ensures a comprehensive record of the OTA

update process, facilitating analysis and troubleshooting if

any issues arise. In addition to logging, the OTA system

incorporates a monitoring function, denoted by M, which

continuously evaluates the progress and performance of the

update process. The monitoring function, represented by

M(t) = f(L(t)), leverages the log file at time t to provide

insights and assessments. By analyzing the recorded infor-

mation, the monitoring function identifies potential issues,

tracks the update’s progress, and enables timely intervention

22

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Two categories of hardware. Subfigure (a)-(b) shows the Intel
Fognodes, and Apple Macbooks, respectively.

if necessary. This proactive approach ensures that the OTA

update process remains robust, reliable, and capable of

detecting anomalies for a swift resolution.

D. Hardware Setup

Our OTA framework utilizes three types of hardware,

namely Intel Fognode, Apple Macbook Air M1 and Mac-

Book M2 Pro, as depicted in Fig. 4. The Edge-RSU is

equipped with an Intel Fognode, which offers programmabil-

ity and configuration options for diverse use cases, ensuring

consistent throughput for different workloads [21]. The Mac-

Book workstation, equipped with high-quality components

including 8 & 32 core GPU and 16 &32 GB memory de-

livers cluster-level performance for demanding applications.

Further details about these devices are provided in Table. II.

TABLE II
CONFIGURATION INFORMATION OF TWO HARDWARE DEVICES.

Intel Fognode Macbook Air Macbook Pro
CPU Intel Xeon E3-1275 v5 M1 M2 Max
GPU NONE 8 Core 32 Core

Frequency 3.6 GHz 3.2 GHz 3.6 GHz
Memory 32 GB 16 GB 32 GB

OS Ubuntu 16.04.6 LTS MacOS Ventura 13.6 MacOS Ventura

E. Model Description

We conducted our OTA experiment using three machine

learning models: Faster R-CNN, ResNet-18, and ResNet-50.

Following is their description:

1) Faster R-CNN: Faster R-CNN is a two-stage object

detection model that consists of a Region Proposal Network

(RPN) and a Fast R-CNN network. The RPN generates

potential object proposals by sliding a small network over

the convolutional feature map, predicting regions likely to

contain objects [22]. These proposals are fed into the Fast

R-CNN network, which performs classification and bound-

ing box regression. The model uses shared convolutional

features to extract features from the entire image, enabling

efficient computation.

2) ResNet-18: ResNet-18 [23] is a deep convolutional

neural network architecture comprising 18 layers, includ-

ing convolutional pooling, and fully connected layers. It

introduces the concept of residual connections, allowing

the network to learn residual mappings instead of directly

learning the desired output. This helps alleviate the van-

ishing gradient problem and enables the training of very

deep networks. ResNet-18 uses residual blocks with two

convolutional layers and shortcut connections that skip one

or more layers, allowing information to bypass the layers

and propagate through the network more effectively [24].

3) ResNet-50: Similar to ResNet-18, ResNet-50 [25] is

also a deep convolutional neural network architecture com-

prising 50 layers, including convolutional, pooling, and fully

connected layers. It is an extension of the ResNet-18 model

with more layers and increased complexity. Like ResNet-18,

ResNet-50 also incorporates residual connections to address

the vanishing gradient problem and facilitate the training of

deeper networks.

F. Container-based OTA Update

Container-based OTA software updates can be a potential

solution for facilitating software updates in the automotive

industry. Containers are built from layered images rep-

resenting specific data, software, hardware, and network

configuration parameters [26]. Each container image consists

of multiple layers, encompassing all necessary software

libraries, binaries, and configuration settings. In this paper

to remove the latency constraints we adopt Delta file based

OTA update where instead of updating the whole software

binary files we are updating the delta files.

1) Delta file based OTA Update: Delta file flashing

involves comparing the base file with the new version file

to generate a smaller delta file, significantly reducing the

update size [27]. This method offers faster transmission,

saving up to 90% of the transmission time compared to

complete binary updates. It requires less storage and utilizes

a patching algorithm to overwrite old and new data.

IV. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

A. Experimental Setup

1) Intel Fognode as Edge-RSU: The Intel Fognode is

a central component of the experimental setup, function-

ing as the Edge-RSU responsible for hosting the software

updates. It provides the necessary computational resources

and creates a Wi-Fi hotspot for vehicle connectivity. For our

experiment we used a 100Mbps WiFi connection.

2) Device Connection and Logging: A logging mecha-

nism is implemented to track device connections and dis-

connections to the RSU’s Wi-Fi hotspot. Whenever a device

connects or disconnects, the log records the corresponding

MAC address of the device. The entire log output is stored

in a designated log file for analysis.

3) MAC Address Extraction: A script is employed to

monitor changes in the log file size. Upon detecting a

change, the script retrieves the last line of the log file,

which typically corresponds to the connection status of a

new device. This line contains the device’s MAC address.

4) IP Address Retrieval: With the MAC address obtained,

the experimental setup employs the “arp” (address resolution

protocol) command to determine the associated IP address

of the connected device. This information is crucial for

subsequent communication and software update delivery.

23

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401Tr
an

sm
is

si
on

 B
an

dw
id

th
 (K

B/
S)

Transmission Time (Second)

OTA Update ResNet-18
0 meters
3 meters
6 meters
9 meters
12 meters
15 meters
18 meters
21 meters

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401Tr
an

sm
is

si
on

 B
an

dw
id

th
 (K

B/
S)

Transmission Time (Second)

OTA Update ResNet-50
0 meters
3 meters
6 meters
9 meters
12 meters
15 meters
18 meters
21 meters

0

400

800

1200

1600

2000

2400

2800

3200

1 51 101 151 201 251 301 351 401Tr
an

sm
is

si
on

 B
an

dw
id

th
 (K

B/
S)

Transmission Time (Second)

OTA Update Faster R-CNN
0 meters
3 meters
6 meters
9 meters
12 meters
15 meters
18 meters
21 meters

Fig. 5. Transmission bandwidth of OTA update for ResNet-18, ResNet-50, and Faster R-CNN.

Fig. 6. The change curves of successful rate (%) when update ResNet-18.

5) Device Readiness Verification: A ping test ensures the

connected device is ready to receive the software update. The

setup verifies the device’s responsiveness by pinging, and a

successful ping response confirms the device’s operational

state and readiness for the update.

6) Software Update Files: The software update package

consists of several components, including a Dockerfile for

building a new Docker image, a Python script for executing

a new model, the model weights, and a Bash script to initiate

the Docker build and run the updated image. For file transfer

between the Edge-RSU (Intel Fognode) and connected vehi-

cle (Macbook), the “nc” (netcat) command is utilized. Here,

“nc ”operates as a versatile networking utility, functioning

as both a client and a server for bidirectional communication

over the network. In this setup, “nc” operates in server

mode (nc-l) and listens on a specific port (port 1234).

When a device connects to the Wi-Fi hotspot hosted by the

Intel Fognode, the “nc” command establishes a connection,

allowing the Edge-RSU (Intel Fognode) to transmit the

software update files to the connected vehicle (Macbook).

Fig. 7. OTA update latency of ResNet-18, ResNet-50, and Faster R-CNN
under different distances from 0 to 21 meters.

The received data is processed through a pipeline of orders,

starting with compression using the “gzip” command to

reduce file size for efficient transmission. The compressed

data is then extracted using the “tar” command to restore

the original files from the compressed archive.
7) Definition of OTA Update Failure: Given the com-

plexity of OTA updates, a universally accepted definition of

OTA update failure does not exist. Various factors, such as

power outages, faulty batteries, connectivity loss, and user

interference, can contribute to the failure of OTA updates

and are commonly recognized as frequent causes of failures

[28]. During our development of the OTA mechanism, it

became apparent that these failures can hinder the success-

ful reception, installation, or execution of updated vehicle

software, resulting in potential functional inconsistencies,

malfunctions, or even system instability. In our study, we
consider an OTA update to fail when network connectivity
issues arise due to bandwidth limitations. The vehicular

network operates in a dynamic environment where vehicles

constantly move. As the distance increases between the

Edge-RSU station and the target vehicles, when triggers the

updates, the time required for deploying updates significantly

extends. This could potentially lead to update failures. Fur-

thermore, simultaneously executing multiple OTA updates

on different vehicles increases the risk of failures.
8) Definition of OTA Update Latency: OTA update la-

tency refers to the time it takes to complete an update

process. It is influenced by factors such as the size of the

update package and the distance between the source (Edge-

RSU) and the target (vehicle). Generally, the OTA update la-

tency increases as the model size or distance increases. This

latency is an important metric to consider when assessing

the efficiency and effectiveness of OTA update mechanisms,

as longer latencies may lead to extended periods of potential

system operational disruptions.

B. Experiment Groups
The experimental procedure involved conducting a series

of software OTA update experiments from the Edge-RSU

(Intel Fognode) to a vehicle (MacBook) at varying distances.

Distances of 0, 3, 6, 9, 12, 15, 18, and 21 meters were

selected to examine the impact of distance on the OTA

update process. We also used three distinct sizes of funda-

mental vehicle models, Faster R-CNN (175.2 MB), ResNet-

24

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

18 (46.8 MB), and ResNet-50 (102.5 MB), to assess the

update performance across the eight distances. Throughout

each experiment, the bandwidth was logged on the vehicle’s

log file, and the time taken for the update.

1) Correlation among OTA Update Time, Model Size,
Distance and Transmission Bandwidth: To understand the

correlation between OTA update time vs. the update model

size and the varying distances between Edge-RSU and

vehicles, we set the placement of Edge-RSU and the vehicle

at different distances varying from 0, 3, 6, 9, 12, 15, 18, and

21 meters are analyzed, and their impact on the transmission

bandwidth speed during OTA update is shown in Fig. 5.

The experiment confirms that the OTA update time in-

creases as the distance between the Edge-RSU and the

vehicle increases. The influence of model size on the up-

date time was also observed, with larger models, such as

Faster R-CNN, requiring more time than smaller models,

like ResNet-18, to update. For example, at a distance of

21 meters, ResNet-18 took approximately 140 seconds to

complete the update, while Faster R-CNN took around 410

seconds, almost four times longer. Similarly, ResNet-50, a

larger model than ResNet-18 but smaller than Faster R-

CNN, took approximately 350 seconds to complete the

update at the same distance. Besides we also monitored the

bandwidth throughout the experiment to identify variations

or fluctuations during the OTA update. The analysis revealed

correlations between distance, model size, update time, and

bandwidth speed. Fig. 5 demonstrates that at lower distances,

such as 0 or 3 meters, all three models exhibited higher

transmission bandwidth, with ResNet-18 and Faster R-CNN

peaking at around 2800 KB/s and ResNet-50 at 1600 KB/s.

In contrast, at higher distances (12, 15, 18, and 21 meters),

the transmission bandwidth remained consistent between

400 and 800 KB/s.

Successful Rate Exploration: As shown in Fig. 6, during

our OTA update experiment, we set threshold times (60s,

90s, and 120s) to determine update success or failure. If

the update process exceeded the threshold time, it was

classified as a failure. We used the ResNet-18 model for this

experiment, as shown in Fig. 6, and at the 60s threshold,

we observed failures at 9m and 18m distances, indicating

the process needed longer to complete the update. The

successful rate increased as the threshold increased to the

90s and 120s. However, successful rates are varied. For

example, it is around 10% at 18m and 50% at 21m for

the 90s, while for the 120s threshold, it is 50% at 18m.

These failures were attributed to network connectivity and

software compatibility issues. Addressing these challenges

is crucial for ensuring successful OTA updates. To be

short, this experiment provided valuable insights into the

impact of distance and model size on OTA update time. As

distance and size increase, OTA update takes longer, and the

transmission bandwidth speed gets slower.

2) Correlation between OTA Update Latency Vs. Model
Size and Distance: We also investigated the OTA update

Fig. 8. Network setup time.

latency in relation to varying model sizes and distances, as

depicted in Fig. 7. The analysis revealed a clear correlation

between update latency vs. model size, and distance. As

the model size and distance increased, the latency also

increased. For example, as shown in the Fig. 7, the latency

for completing the OTA update of ResNet-18 increased from

31 seconds at 0 meters to approximately 101 seconds at 21

meters. Additionally, the latency increased significantly with

larger model sizes. At a distance of 9 meters, the latency for

ResNet-18 was 47 seconds, while for ResNet-50, it was 149

seconds, and for Faster R-CNN, it was around 266 seconds.

These findings support the intuition that larger model sizes

and longer distances result in longer OTA update latencies.

3) Network Setup Time: Network setup time refers to the

duration required to establish a network connection between

the update server and the target vehicle while initiating

an OTA update. It involves configuring network param-

eters, establishing communication channels, and verifying

connectivity. The setup time can vary based on network

infrastructure, signal strength, and configuration complexity.

Our experiment measured the network setup time while

updating ResNet-18 across different distances (0m to 21m)

as shown in Fig. 8. We conducted ten runs at each distance

and observed a consistent network setup time of around 10

seconds, with a maximum of approximately 15 seconds at

a distance of 6m. A shorter network setup time ensures a

quicker start to the update process and facilitates efficient

communication between the update server and the vehicle.

4) OTA Update based on Heterogeneous Computing
Units: We analyzed the downlink bandwidth, which mea-

sures the data transfer speed from the Intel Fognode acting

as the Edge-RSU to the Macbooks serving as vehicles. Three

groups were formed with varying configurations, as depicted

Ba
nd

w
id

th
 (K

B/
S)

Time (Second)

Downlink Bandwidth from Intel Fognode

Group 1 (RSU: One Intel Fognode; vehicle: one Macbook Air)
Group 2 (RSU: One Intel Fognode; vehicles: two Macbook Airs)
Group 3 (RSU: One Intel Fognode; vehicles: two Macbook Airs and one MacBook Pro)

Fig. 9. Three group’s downlink bandwidth from RSU.

25

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

0

500

1000

1500

2000

2500

3000

1 20 39

Ba
nd

w
id

th
 (K

B/
S)

Time (Second)

Group 3

Outgoing traffic from Intel Fognode
Incoming traffic to Macbook Air 1
Incoming traffic to Macbook Air 2
Incoming traffic to Macbook Pro

0

500

1000

1500

2000

2500

3000

1 5 9 13 17 21 25 29

Ba
nd

w
id

th
 (K

B/
S)

Time (Second)

Group 1

Outgoing traffic from Intel Fognode
Incoming traffic to Macbook Air

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51

Ba
nd

w
id

th
 (K

B/
S)

Time (Second)

Group 2

Outgoing traffic from Intel Fognode
Incoming traffic to Macbook Air 1
Incoming traffic to Macbook Air 2

Fig. 10. Outgoing and incoming traffic for ResNet-18 OTA update.

in Fig. 9: Group 1 consisted of one Intel Fognode and one

Macbook Air, Group 2 had one Intel Fognode and two

Macbook Air, and Group 3 had one Intel Fognode, two

Macbook Air, and one Macbook Pro. The OTA update for

Group 1 was completed in 32 seconds, while for Group

2, Macbook Air 1 took 49 seconds, and Macbook Air 2

took 47 seconds. However, Group 3 exhibited a different

trend, with the OTA update completing in 29 seconds for

Macbook Air 1, and 27 seconds for Macbook Air 2, but

failing to complete on the Macbook Pro around 9 seconds

into the update. The peak bandwidth speed observed in all

three groups was approximately 2800 KB/S, with the lowest

observed speed being around 0 KB/S. This experiment

provided valuable insights into the impact of factors such as

vehicle performance and the number of vehicles on downlink

bandwidth performance.

To comprehensively evaluate the importance of OTA up-

dates across heterogeneous computing units, we conducted

experiments involving the same three groups of varying

computing units using the same ResNet-18 model. The OTA

update was initiated again from the Edge Fognode, and

the distribution of bandwidth traffic among the connected

vehicles was observed, as depicted in Fig.10. In Group

1, where a single vehicle (Macbook Air 1) received the

update, both the incoming bandwidth on the vehicle and

the outgoing bandwidth from the Intel Fognode followed

the same pattern. The peak outgoing bandwidth speed and

incoming bandwidth traffic were measured at approximately

2800 KB/S, and the update was completed in around 32

seconds. However, group 2, where we used two vehicles

with identical computing units, showed that both vehicles’

incoming bandwidth traffic equally shares the bandwidth

traffic 1300 KB/S but vehicle 1 experienced a sudden surge

in bandwidth towards the end (2800 KB/S), resulting in

an earlier update completion time of around 41 seconds

compared to the other vehicle, which took approximately

50 seconds. In Group 3, an additional vehicle (Macbook

Pro) was included in the experiment. Due to its superior

hardware performance, the transfer of files was completed

in a significantly shorter time of 20 seconds with a peak

bandwidth speed of around 2700 KB/S. Although all three

experimental groups finished the updates, vehicle one and

vehicle two took longer to complete their respective updates

than vehicle three.

The experiment demonstrated that vehicles with better

hardware performance can receive a larger share of the net-

work traffic. While the resources were shared equally among

the two Macbook Airs in the experiment, the Macbook

Pro obtained a more significant portion of the bandwidth

due to its superior capabilities. These findings highlight the

significance of considering the heterogeneity of computing

units in OTA updates and its potential impact on network

traffic distribution.

C. Observations and Insights

We presented OTA update for three models at varying

distances to observe the impact of distance on OTA update

time and how it also impacts the bandwidth traffic. Some

interesting observations are listed, including supporting ev-

idence and reasons to explain the observed trends and

practical implications for researchers and domain experts.

Observation 1: During the analysis of the collected data,

it was observed that the bandwidth experienced an irreg-

ular pattern in relation to the distance. Typically, as the

distance increased, the bandwidth decreased, indicating

a decrease in data transmission speed. However, there

were certain cases where this pattern did not hold, and

deviations were observed.

Observation 2: An additional phenomenon contradicted

the anticipated pattern of decreasing bandwidth with

increasing distance. In certain instances, it was observed

that the bandwidth exhibited unexpected behavior. Specif-

ically, the bandwidth was lower at shorter distances,

while it appeared to be faster at longer distances. This

anomaly introduced complexity to the relationship be-

tween distance and bandwidth during the software update

process, deviating from the conventional understanding

that greater distance corresponds to reduced bandwidth.

Observation 3: The bandwidth measurements occasion-

ally exhibited substantial fluctuations, with intermittent

instances where the bandwidth dropped to zero during

the update process. These occurrences were classified

as failed updates, suggesting the presence of potential

obstacles or interruptions in the wireless connection.

Observation 4: OTA updates using delta files offer sig-

nificant advantages over complete binary updates. By

only transmitting the differences between the old and new

versions, delta updates have smaller file sizes, resulting in

26

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

faster transmission times and reduced bandwidth usage.

In our experiment, we observed a substantial improve-

ment in update efficiency. While updating the binary file

of Yolo [29] model took approximately 2 hours and 30

seconds, the three model we used for updating using

only delta file was completed around 7 minutes. This

highlights the efficiency and effectiveness of delta updates

in OTA deployments.

The existence of diverse patterns and intermittent bandwidth

irregularities impacts the software OTA update process.

Various elements, including environmental conditions, signal

interference, and other variables, may contribute to the

observed variations and deviations from the anticipated

distance-based pattern.

V. CONCLUDING REMARKS

In conclusion, our study addresses the imperative need

for SDVs and implmement software OTA updates in the

automotive industry. We have made significant contribu-

tions to the field by pioneering the implementation of an

edge-assisted framework for automotive OTA updates. By

carefully considering factors such as vehicular software

models, vehicle computing units, communication distances,

and vehicle cluster sizes, we have provided valuable insights

and evaluation metrics for OTA updates. It may significantly

contribute to the future development and implementation of

SDVs and OTA updates in the automotive industry.

REFERENCES

[1] A. Mahmood, W. E. Zhang, and Q. Z. Sheng, “Software-defined
heterogeneous vehicular networking: The architectural design and
open challenges,” Future Internet, vol. 11, no. 3, p. 70, 2019.

[2] Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial intelligence
applications in the development of autonomous vehicles: A survey,”
IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 315–329,
2020.

[3] S. R. Pokhrel, “Software defined internet of vehicles for automation
and orchestration,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 6, pp. 3890–3899, 2021.

[4] C. Jiacheng, Z. Haibo, Z. Ning, Y. Peng, G. Lin, and S. X. Sherman,
“Software defined internet of vehicles: architecture, challenges and
solutions,” Journal of communications and information networks,
vol. 1, no. 1, pp. 14–26, 2016.

[5] P. Nikbakht Bideh and C. Gehrmann, “Rosym: Robust symmetric key
based iot software upgrade over-the-air,” in Proceedings of the 4th
Workshop on CPS & IoT Security and Privacy, 2022, pp. 35–46.

[6] E. Cebel, N. Donum, and H. Karacali, “Platform independent em-
bedded linux ota method,” The European Journal of Research and
Development, vol. 2, no. 4, pp. 243–252, 2022.

[7] B. Shen, “Competitive strategies for ota services: Adapting the
strategic clock for tesla,” Highlights in Business, Economics and
Management, vol. 11, pp. 26–32, 2023.

[8] S. Halder, A. Ghosal, and M. Conti, “Secure over-the-air software
updates in connected vehicles: A survey,” Computer Networks, vol.
178, p. 107343, 2020.

[9] M. Khurram, H. Kumar, A. Chandak, V. Sarwade, N. Arora, and
T. Quach, “Enhancing connected car adoption: Security and over the
air update framework,” in 2016 IEEE 3rd World Forum on Internet
of Things (WF-IoT). IEEE, 2016, pp. 194–198.

[10] C. Sun, R. Xing, Y. Wu, G. Zhou, F. Zheng, and D. Hu, “Design
of over-the-air firmware update and management for iot device
with cloud-based restful web services,” in 2021 China Automation
Congress (CAC). IEEE, 2021, pp. 5081–5085.

[11] S. Al Blooshi and K. Han, “A study on employing uptane for
secure software update ota in drone environments,” in 2022 IEEE
International Conference on Omni-layer Intelligent Systems (COINS).
IEEE, 2022, pp. 1–6.

[12] A. Ghosal, S. Halder, and M. Conti, “Stride: Scalable and secure
over-the-air software update scheme for autonomous vehicles,” in ICC
2020-2020 IEEE International Conference on Communications (ICC).
IEEE, 2020, pp. 1–6.

[13] O. Rana, K. Fizza, L. Bittencourt, and N. Auluck, “Pashe: privacy
aware scheduling in a heterogeneous fog environment,” 2019.

[14] A. W. Malik, A. U. Rahman, A. Ahmad, and M. M. D. Santos,
“Over-the-air software-defined vehicle updates using federated fog en-
vironment,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 5078–5089, 2022.

[15] M. Al Maruf, A. Singh, A. Azim, and N. Auluck, “Faster fog
computing based over-the-air vehicular updates: A transfer learning
approach,” IEEE Transactions on Services Computing, 2021.

[16] R. v. Stokar, “Updating car ecus over-the-air (fota), 2013.”
[17] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann,

and O. Henniger, “Secure automotive on-board protocols: A case
of over-the-air firmware updates,” in Communication Technologies
for Vehicles: Third International Workshop, Nets4Cars/Nets4Trains
2011, Oberpfaffenhofen, Germany, March 23-24, 2011. Proceedings
3. Springer, 2011, pp. 224–238.

[18] I. Hossain and S. M. Mahmud, “Analysis of a secure software upload
technique in advanced vehicles using wireless links,” in 2007 IEEE
Intelligent Transportation Systems Conference. IEEE, 2007, pp.
1010–1015.

[19] D. K. Nilsson, P. H. Phung, and U. E. Larson, “Vehicle ecu classifica-
tion based on safety-security characteristics,” in IET Road Transport
Information and Control-RTIC 2008 and ITS United Kingdom Mem-
bers’ Conference. IET, 2008, pp. 1–7.

[20] K. Fizza, N. Auluck, A. Azim, M. A. Maruf, and A. Singh, “Faster
OTA updates in smart vehicles using fog computing,” in Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing Companion, 2019, pp. 59–64.

[21] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are {FPGAs} suitable
for edge computing?” in USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18), 2018.

[22] M. Maity, S. Banerjee, and S. S. Chaudhuri, “Faster r-cnn and yolo
based vehicle detection: A survey,” in 2021 5th international con-
ference on computing methodologies and communication (ICCMC).
IEEE, 2021, pp. 1442–1447.

[23] X. Ou, P. Yan, Y. Zhang, B. Tu, G. Zhang, J. Wu, and W. Li, “Moving
object detection method via resnet-18 with encoder–decoder structure
in complex scenes,” IEEE Access, vol. 7, pp. 108 152–108 160, 2019.

[24] Q. A. Al-Haija, M. A. Smadi, and S. Zein-Sabatto, “Multi-class
weather classification using resnet-18 cnn for autonomous iot and
cps applications,” in 2020 International Conference on Computational
Science and Computational Intelligence (CSCI). IEEE, 2020, pp.
1586–1591.

[25] B. Koonce and B. Koonce, “Resnet 50,” Convolutional Neural Net-
works with Swift for Tensorflow: Image Recognition and Dataset
Categorization, pp. 63–72, 2021.

[26] Y. Wang and Q. Bao, “Adapting a container infrastructure for au-
tonomous vehicle development,” in 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2020, pp.
0182–0187.

[27] M. Steger, C. A. Boano, T. Niedermayr, M. Karner, J. Hillebrand,
K. Roemer, and W. Rom, “An efficient and secure automotive wire-
less software update framework,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 5, pp. 2181–2193, 2017.

[28] P. Dakić and M. Źivković, “An overview of the challenges for
developing software within the field of autonomous vehicles,” in 7th
Conference on the Engineering of Computer Based Systems, 2021,
pp. 1–10.

[29] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

27

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on November 05,2024 at 23:23:14 UTC from IEEE Xplore. Restrictions apply.

