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Abstract

Understanding speech emotion through artificial intelli-
gence (AI) is crucial for human-computer interaction and men-
tal health monitoring. While audio large language models
(ALLMs) excel in speech comprehension, they face challenges
in accurately integrating emotional signals from acoustic and
semantic features. Moreover, emotions often span dialogues,
making sole reliance on current audio insufficient for compre-
hensive understanding. To address these challenges, we pro-
pose a novel emotion-aware audio large language model (EAA).
Specifically, we design a dual cross-attention mechanism to fuse
acoustic and semantic information for a more comprehensive
emotional representation. Furthermore, we use context-aware
instruction tuning by incorporating the current and immedi-
ately preceding utterances as contextual information, enhancing
task understanding and emotion recognition. Our experimen-
tal results show that EAA outperforms existing ALLMs on the
MELD dataset, improving accuracy by 11.4%.
Index Terms: speech emotion recognition, audio large lan-
guage models, instruction tuning

1. Introduction
Speech signals contain multi-level features, in which semantic
information (e.g., speech content) and acoustic characteristics
(e.g., pitch, timbre, and tone intensity) jointly shape emotional
expression. Effectively capturing and integrating these features
is essential for accurate emotion recognition, which plays a crit-
ical role in applications such as human-computer interaction,
mental health monitoring, and customer service [1, 2, 3].

While large language models (LLMs) have demonstrated
strong performance in text-based tasks [4], their ability to un-
derstand speech remains relatively underexplored. Recent ad-
vancements in audio large language models (ALLMs) have
driven progress in speech processing [5, 6]. However, their abil-
ity to effectively perceive and integrate emotional cues remains
limited due to insufficient feature integration and context mod-
eling.

To be concrete, existing ALLMs face two main challenges.
First, they normally have limitations in feature integration, as
most models rely solely on a single audio encoder [5, 6], while
others separately extract semantic and acoustic features and
merely concatenate them [7], failing to capture the intricate in-
teractions between between these two feature types. Second,
emotions in dialogue evolve progressively within context, mak-
ing it difficult to accurately perceive the overall emotional state
from isolated audio segments. Most existing ALLMs do not ef-
fectively incorporate contextual information [8, 7], further lim-
iting their ability to capture the dynamic nature of emotions.

To this end, this paper proposes EAA: emotion-aware au-
dio LLMs with dual cross-attention to integrate semantic and
acoustic features and context-aware instruction tuning for in-
corporating contextual information. This method can not only
adaptively fuse semantic and acoustic features, but also make
full use of dialogue context information, thus improving the ac-
curacy of audio emotion recognition in ALLMs.

To effectively capture emotional information in speech,
EAA use an acoustic encoder to extract acoustic features and
a semantic encoder to process linguistic representations, with
a dual cross-attention mechanism dynamically adjusting fea-
ture importance based on context to enhance integration. When
emotional cues (e.g., high pitch for anger, slow speech for sad-
ness) predominate, the model learns to assign greater weight
to acoustic features; when explicit words (e.g., happy, angry)
dominate, the model prioritizes linguistic features. Specifically,
acoustic features serve as the query, while semantic features act
as the key and value. Conversely, semantic features can also
function as the query, with acoustic features as the key and
value, forming a dual cross-attention mechanism. To main-
tain feature integrity while enhancing fusion, we concatenate
the original acoustic and semantic features with the dual cross-
attention outputs in the final fusion stage. This straightforward
approach preserves unique feature characteristics while ensur-
ing comprehensive integration.

In speech emotion recognition tasks, emotional expressions
are highly context-dependent, making classification challeng-
ing when relying on a single audio instance. For example, the
utterance “What?” can express anger, neutral, or surprise, de-
pending on the preceding sentence, such as “Did you just in-
sult me?”, or some shocking information. Without context,
even combining semantic and acoustic features may be insuf-
ficient. To address this challenge, we propose a context-aware
instruction tuning approach, which allows the model to con-
sider both the current and preceding audio utterances. This tech-
nique enables the model to capture shifts in emotion more effec-
tively, improving emotion state inference in context-dependent
dialogue scenarios and ultimately enhancing the accuracy of
speech emotion recognition systems.

The main contributions of this paper are as follows: (1)
We propose a novel dual cross-attention mechanism that inte-
grates acoustic and semantic features, capturing their interac-
tions while preserving expressiveness to enhance audio repre-
sentation. (2) We introduce context-aware instruction tuning
that integrates the current and immediately preceding utterance
as contextual cues, the model better captures emotion evolution,
reduces ambiguity, and improves adaptability for speech emo-
tion recognition tasks. (3) Comprehensive experiments demon-
strated the superiority of our proposed methods, achieving an
improvement of 11.4%.
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Figure 1: The architecture overview of the proposed EAA.

2. Related Works
Current research on audio large language models explores var-
ious encoder choices, utilizing different fusion strategies for
multiple encoders. Pengi [5] is the first model to integrate audio
encoders with LLMs, utilizing CLAP [9] as the audio encoder.
MERaLiON-AudioLLM [10] employs MERaLiON-Whisper as
its audio encoder and uses a two-layer MLP to align with text
input. Qwen-Audio [6] and OSUM [11] also opt for Whisper
as the audio encoder. These models rely on a single encoder
for feature extraction. In contrast, SALMONN [8] uses both
Whisper and BEATs encoders, using a fusion approach based
on splicing before feeding the features into a window-level Q-
Former. WavLLM [7] combines Whisper and WavLM [12] for
feature extraction, with feature fusion accomplished through 1D
convolution, bottleneck adapters, and linear projection struc-
tures. BLSP-Emo [13] use convolution-based subsampler as
the modality adapter. In addition, AffectGPT as a multimodal
model [14] uses a pre-fusion projector to fuse audio and video
features.

However, these methods still have limitations in the fusion
approach, mainly in the form of inadequate feature interaction.
Most ALLMs use simple splicing or linear projection for fusion,
and the semantic and acoustic information are loosely linked,
making it difficult to capture complex dependencies. Moreover,
splicing or linear transformation may lead to information loss
and affect the alignment effect when dealing with features of
different time scales. Furthermore, these ALLMs do not con-
sider the contextual information, which makes them hard to dis-
tinguish emotions [8, 7]. Therefore, we are motivated to intro-
duce EAA, an advanced approach for enhancing the emotion
perception capabilities of ALLMs by incorporating dual cross-
attention and context-aware instruction tuning.

3. EAA Design
The architecture of EAA is illustrated in Figure 1. The input
audio is first processed by two distinct encoders: a semantic
encoder and an acoustic encoder, each capturing complemen-

tary representations of the speech signal. These representations
are then integrated using a dual cross-attention fusion module,
which effectively aligns and enhances the interaction between
semantic and acoustic features. To further refine emotion recog-
nition, we employ context-aware instruction tuning, fine-tuning
the LLaMA model with LoRA [15] for efficient adaptation.
This approach enables the model to consider both the current
and immediately preceding utterances, leveraging contextual in-
formation to enhance emotion recognition. Finally, the audio
language model generates predicted emotion using the learnt
representations and contextual information.

3.1. Dual Cross-attention Fusion for Audio Representation

To effectively integrate semantic and acoustic features, we de-
sign a dual cross-attention fusion module that enhances the in-
teraction between these two representations. Given an input au-
dio signal x, we employ two distinct encoders: the semantic
encoder fs and the acoustic encoder fa.

The semantic encoder fs (HuBERT [16]) leverages pseudo-
labels generated from spectral features or the model’s own
learned representations, which have been shown to contain rich
semantic information [17]. Meanwhile, the acoustic encoder
fa (BEATs [18]) focuses on capturing fine-grained spectral and
prosodic characteristics directly from the raw audio signal.

The outputs of these encoders are represented as:

S = fs(x) ∈ RTs×ds , A = fa(x) ∈ RTa×da (1)

where S and A represent the speech and acoustic features,
Ts, Ta are sequence lengths, and ds, da are the respective fea-
ture dimensions. To align these features in a shared latent space,
we apply linear projections:

S̃ = WsS + bs, Ã = WaA+ ba (2)

where Ws,Wa are trainable projection matrices that map the
features to a common dimension d. Before performing cross-
attention, we apply layer normalization to both projected fea-
tures S̃ and Ã to stabilize training. Since the sequence lengths



Ts and Ta may differ, we pad the shorter sequence along the
temporal axis with zeros, aligning both sequences to the same
length T = max(Ts, Ta). This ensures that the attention mech-
anisms operate over temporally aligned representations.

Then, we employ dual cross-attention where each repre-
sentation attends to the other. Specifically, the semantic-to-
acoustic attention allows the semantic features to query the
acoustic representations, incorporating detailed acoustic char-
acteristics, while the acoustic-to-semantic attention enables the
acoustic features to query the semantic representations, enrich-
ing them with linguistic information. Formally, given semantic
features S̃ and acoustic features Ã , the attention mechanisms
are defined as:

Atts = Softmax
(
QsK

T
a√

d

)
Va

Atta = Softmax
(
QaK

T
s√

d

)
Vs

(3)

where Q, K, and V are query, key, and value projections, re-
spectively, and d represents the feature dimension. We use a
simple yet effective concatenation strategy to fuse the original
and attended features into the final representation:

F = Concat(S̃, Ã,Atts,Atta) (4)

The fused representation F is then projected into the hidden
space of the language model for downstream processing. This
bidirectional interaction enhances the fusion of semantic and
acoustic information, leading to a more comprehensive audio
representation.

3.2. Context-aware Instruction Tuning

Identifying emotions from isolated speech is inherently chal-
lenging due to the absence of contextual cues. In natural dia-
logue, emotions evolve continuously, with prior discourse shap-
ing the emotional state of the current utterance. To overcome
this limitation, we propose a context-aware instruction tuning
mechanism that effectively integrates contextual information
into the emotion recognition process, enabling a more accurate
and nuanced understanding of speech emotions.

Given an input utterance of a speech, we retrieve its most
recent preceding utterance within the same conversation to form
a contextual representation. Here, an utterance refers to a sin-
gle complete sentence within the dialogue. Specifically, for an
audio sample xt at time step t, if a prior utterance xt−1 exists
within the same dialogue, we concatenate them using a separa-
tor token:

Ct = xt−1 ⊕ xt (5)
where ⊕ denotes sentence-level concatenation, allowing the
model to capture contextual dependencies. If no previous utter-
ance is available, the current utterance is used as a standalone
input.

To further enhance the model’s ability to recognize emo-
tions, we employ instruction tuning with the prompt: “Describe
the speaker’s emotion in one word.” This instruction ensures
that the model’s output aligns with the expected emotion cate-
gories. The final input to LLaMA consists of fused audio fea-
tures, the instruction prompt, and contextual information, pro-
viding a richer representation for emotion recognition.

4. Performance Evaluation
The audio signals are processed at a sampling rate of 16kHz
to maintain consistency across all samples. Each waveform is

Table 1: Comparison of different audio-language models on
emotion recognition. Any results that are directly cited from the
original paper are denoted with the symbol †. Results reported
by [20] are denoted with the symbol *, while those reported by
[6] are marked with the symbol ‡. Results without any super-
script were obtained from our own experiments.

Model Accuracy

Pengi [5] 0.289
MERaLiON † [10] 0.302
SALMONN * [8] 0.331
Whisper + Llama3 * [20] 0.334
WavLLM * [7] 0.411
WavLM-large ‡ [12] 0.542
Qwen2-audio † [21] 0.553
AffectGPT †[14] 0.557
Qwen-audio † [6] 0.557
OSUM † [11] 0.566
BLSP-Emo † [13] 0.573

EAA (Ours) 0.687

converted to a single-channel format, with resampling applied
when necessary. Feature extraction is performed using two en-
coders: the semantic encoder HuBERT and the acoustic encoder
BEATs. To balance efficiency and performance, all layers of
both encoders are frozen except for the last two, which are fine-
tuned to adapt to the emotion recognition task.

For efficient fine-tuning of the LLaMA-3-8B model, we
employ LoRA, which updates only a subset of parameters while
keeping the majority of the pre-trained model frozen. Specifi-
cally, we set the LoRA rank to 2, the LoRA scaling factor (α)
to 16, and apply a dropout rate of 0.2 to enhance generalization.
The model is trained with a batch size of 2 and a hidden size of
768. The optimizer used is AdamW with an initial learning rate
of 5 × 10−6. A linear warm-up is applied at the beginning of
training, followed by a cosine decay learning rate schedule to
stabilize optimization. The model is trained on a single H100
GPU.

4.1. Dataset and Evaluation Metric

In this work, we utilize the MELD dataset [19] for training, val-
idation, and testing because of its comprehensive annotations
and widespread adoption in both pretraining and downstream
emotion recognition tasks. MELD is a multimodal dataset in-
corporating text, video, and audio modalities. Since our focus
is on audio-language models, we utilize only the text and au-
dio data. The dataset covers seven emotion categories: neu-
tral, joy, sadness, anger, fear, disgust, and surprise, comprising
13,847 utterances from 407 speakers, spanning a total of 12.2
hours of English speech. It is pre-divided into training, valida-
tion, and testing sets, ensuring a standardized evaluation pro-
cess. For evaluation, we assess accuracy by comparing the pre-
dicted emotion labels generated by our proposed models with
the ground truth annotations provided in the dataset, ensuring a
reliable performance assessment.

4.2. Results

We compare our proposed model with various ALLMs, includ-
ing Pengi [5], MERaLiON [10], SALMONN [8], WAVLLM
[7], WavLM-large [12], QWen2-audio [21], AffectGPT [14],
Qwen-audio [6], OSUM [11], and BLSP-emo [11]. Among



Table 2: Comparison of traditional emotion recognition meth-
ods. The accuracy values for all baseline models are reported
from their respective original papers. “✓” indicates that the
model utilizes the corresponding modality.

Model Text Audio Video Accuracy

UniMSE [29] ✓ ✓ ✓ 0.651
MPT-HCL [30] ✓ ✓ ✓ 0.659
SDT [27] ✓ ✓ ✓ 0.676
CFN-ESA [26] ✓ ✓ ✓ 0.679
M2FNet [25] ✓ ✓ ✓ 0.679
SACL-LSTM [28] ✓ 0.679
Mamba-like Model [23] ✓ ✓ ✓ 0.680
GS-MCC [22] ✓ ✓ ✓ 0.681
DF-ERC [24] ✓ ✓ ✓ 0.683
ELR-GNN [31] ✓ ✓ ✓ 0.687

EAA (Ours) ✓ ✓ 0.687

these, AffectGPT [14] is a multimodal LLM. The results of this
comparison are presented in Table 1 show that EAA achieves
state-of-the-art performance in ALLMs for speech emotion
recognition, with an accuracy of 68.7%. Notably, even when
compared to ALLMs specifically designed for emotional sup-
port [13], our method outperforms them by a significant margin
of 11.4%, proving its superior effectiveness.

Additionally, we evaluate our approach against traditional
classification methods that do not use the audio encoder and
large language model architecture, including GS-MCC [22],
Mamba-like Model [23], DF-ERC [24], M2FNet [25], CFN-
ESA [26], SDT [27], and SACL-LSTM [28]. The results for
these methods are shown in Table 2, which demonstrates that
EAA remains competitive with traditional speech emotion clas-
sification models. Notably, our method achieves comparable
performance to the ELR-GNN model, which incorporates an
additional video modality. As can be seen from Table 1 and
Table 2, most ALLMs are not as effective when compared to
traditional classification methods. This is likely due to the fact
that classification requires the model to choose from only seven
emotion categories, whereas generation demands selecting an
appropriate emotion-related word from a much larger vocabu-
lary. Overall, our method enables ALLMs to achieve accuracy
comparable to traditional classification models, effectively clos-
ing the performance gap.

Table 3: Impact of contextual information on emotion recogni-
tion.

Context Setting Accuracy

No utterance (audio only) 0.523
Only current utterance 0.667
Current utterance + preceding sentence 0.687

4.3. Ablation Study

To further evaluate the effectiveness of our proposed contribu-
tions, we conduct a series of experiments. First, we investi-
gated the effect of contextual information on emotion recogni-
tion ability in EAA. The results, presented in Table 3, highlight
the impact of incorporating context on model performance. In
this table, “No utterance” refers to the setting where neither the
current utterance of the audio nor the preceding sentence from
the previous audio is provided, i.e, there is no additional text in-
formation about the input audio. The results show that including

Figure 2: Comparison of attention mechanisms.

only the current utterance significantly improves the model’s
ability to recognize emotions. Furthermore, adding the preced-
ing sentence from the previous audio further enhances perfor-
mance, emphasizing the importance of contextual information
in audio-based emotion recognition.

Next, we evaluate the effectiveness of the dual cross-
attention mechanism by comparing it with alternative atten-
tion strategies. Specifically, we consider three additional con-
figurations: (1) a model that relies solely on self-attention,
where acoustic and semantic features independently undergo
self-attention without any interaction between them; (2) a single
cross-attention approach where acoustic features serve as the
query while semantic features act as the key and value; and (3)
a reverse setup where semantic features serve as the query while
acoustic features function as the key and value. In all configu-
rations, both the current utterance and the preceding sentence
are included to provide contextual information. The results are
presented in Figure 2. As observed, the model performs better
when acoustic features are used as queries and semantic features
serve as keys and values, compared to the reverse setting where
semantic features are queries. This indicates that cross-attention
with acoustic features attending to original semantic representa-
tions captures more useful information for emotion recognition
than the opposite direction. Using self-attention alone can still
achieve relatively good performance, but it is not as effective as
dual cross-attention in feature fusion.

5. Conclusions
This study investigates the emotion-awareness capability of au-
dio large language models. We propose EAA (Emotion-Aware
Audio LLMs), which integrates dual cross-attention fusion and
context-aware instruction tuning to enhance emotion recogni-
tion. First, we employ a dual cross-attention mechanism to ef-
fectively fuse acoustic and semantic features while preserving
the original un-fused features to ensure a more comprehensive
audio representation. Then, recognizing the challenge of iden-
tifying emotions from isolated audio, we incorporate context-
aware instruction tuning to fine-tune LLaMA, leveraging con-
versational context to improve the understanding of emotion.
Experimental results demonstrate that EAA achieves superior
performance in generating accurate emotion labels. In the fu-
ture, we will explore generating supportive responses and im-
proving generalization across emotions and contexts.
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